AWS / amazon-bedrock

5 개의 포스트

aws

AWS Weekly Roundup: Kiro CLI latest features, AWS European Sovereign Cloud, EC2 X8i instances, and more (January 19, 2026) (새 탭에서 열림)

이 글은 2026년 1월 셋째 주 AWS의 주요 기술 업데이트와 커뮤니티 소식을 다루며, 특히 Kiro CLI의 기능 강화와 유럽 주권 클라우드의 정식 출시를 핵심 성과로 제시합니다. 또한 고성능 메모리 최적화 인스턴스인 EC2 X8i의 상용화와 Amazon Quick Suite를 통한 AI 에이전트 활용 사례를 통해 더욱 고도화된 클라우드 생태계를 구축했음을 보여줍니다. 이번 소식은 엔터프라이즈급 성능 요구 사항과 지역별 규제 준수, 그리고 AI 기반 생산성 향상이라는 세 가지 측면에서 AWS의 진보를 요약하고 있습니다. **Kiro CLI의 제어 및 사용자 경험 강화** * 웹 호출(web fetch) URL에 대한 세밀한 제어 기능을 도입하여, 허용 목록(allowlist)과 차단 목록(blocklist)을 통해 에이전트가 접근할 수 있는 URL 범위를 엄격하게 제한할 수 있습니다. * 커스텀 에이전트를 위한 전용 키보드 단축키와 개선된 Diff 뷰를 제공하여, 단일 세션에서 여러 전문화된 에이전트와 협업할 때 발생하는 마찰을 최소화했습니다. **AWS 유럽 주권 클라우드 정식 출시** * 2023년부터 추진해 온 독립적인 클라우드 인프라인 'AWS European Sovereign Cloud'가 모든 고객을 대상으로 정식 서비스(GA)를 시작했습니다. * 유럽 내 가장 엄격한 데이터 주권 및 규제 요건을 충족할 수 있도록 설계되었으며, 포괄적인 AWS 서비스 세트를 제공하여 유럽 고객들의 컴플라이언스 대응을 지원합니다. **메모리 최적화 EC2 X8i 인스턴스 상용화** * AWS 전용 커스텀 Intel Xeon 6 프로세서를 탑재한 EC2 X8i 인스턴스가 정식 출시되었으며, 모든 코어에서 최대 3.9GHz의 터보 주파수를 유지합니다. * SAP 인증을 획득한 이 인스턴스는 클라우드 내 인텔 기반 프로세서 중 최고 수준의 성능과 메모리 대역폭을 제공하여 메모리 집약적인 워크로드에 최적화되어 있습니다. **생산성 향상을 위한 AI 에이전트 및 도구** * AI 에이전트 동료인 'Amazon Quick Suite'를 통해 비즈니스 질문에 답을 구하고 인사이트를 행동으로 전환하는 생산성 활용 사례가 공유되었습니다. * GitHub Actions를 사용하여 Amazon Bedrock AgentCore에 AI 에이전트를 자동 배포하는 방법이 소개되어, 개발자들이 더욱 효율적으로 AI 기능을 운영 환경에 적용할 수 있게 되었습니다. 이번 업데이트는 강력한 보안과 규제 준수가 필요한 유럽 시장부터, 고성능 컴퓨팅이 요구되는 엔터프라이즈 환경, 그리고 실무 효율을 높이는 AI 에이전트 기술까지 폭넓은 영역을 아우르고 있습니다. 기술 조직은 특히 강화된 Kiro CLI와 Bedrock AgentCore 배포 자동화 가이드를 참고하여 사내 AI 에이전트 운영 환경을 최적화하고 개발 생산성을 한 단계 더 끌어올릴 수 있을 것입니다.

aws

Amazon Bedrock adds reinforcement fine-tuning simplifying how developers build smarter, more accurate AI models (새 탭에서 열림)

Amazon Bedrock에 새롭게 도입된 '강화 미세 조정(Reinforcement Fine-tuning)'은 대규모 라벨링 데이터셋 없이도 피드백 루프를 통해 AI 모델의 정확도와 효율성을 극대화하는 혁신적인 맞춤화 기능입니다. 이 서비스는 복잡한 기계 학습 워크플로를 자동화하여 전문 지식이 부족한 개발자도 기본 모델 대비 평균 66% 향상된 성능의 모델을 구축할 수 있게 지원합니다. 결과적으로 기업은 높은 비용이 드는 대형 모델 대신, 특정 업무에 최적화된 작고 빠른 모델을 경제적으로 운용할 수 있습니다. **강화 미세 조정의 작동 원리와 차별점** * 기존의 미세 조정 방식이 사람이 일일이 라벨을 붙인 방대한 데이터셋을 필요로 했던 것과 달리, 보상 함수(Reward functions)를 사용하여 모델의 응답 품질을 평가하고 학습시킵니다. * 고정된 예시를 암기하는 것이 아니라, 어떤 응답이 비즈니스 요구사항에 더 적합한지 판단하는 '보상 신호'를 통해 모델이 반복적으로 개선됩니다. * 이러한 피드백 기반 접근 방식은 데이터 준비 비용을 획기적으로 줄이면서도 모델이 사용자의 의도를 더 정확하게 파악하도록 돕습니다. **비즈니스 효율성을 위한 주요 장점** * **사용 편의성:** Amazon Bedrock 내의 기존 API 로그나 업로드된 데이터셋을 그대로 활용할 수 있어, 복잡한 인프라 설정 없이도 즉시 학습을 시작할 수 있습니다. * **성능 및 비용 최적화:** Amazon Nova 2 Lite와 같은 가볍고 빠른 모델을 강화 미세 조정함으로써, 더 크고 비싼 모델보다 뛰어난 특정 작업 수행 능력을 갖추게 할 수 있습니다. * **보안 및 신뢰성:** 모델 맞춤화의 모든 과정이 보안이 유지되는 AWS 환경 내에서 이루어지므로, 기업의 민감한 데이터 유출 우려 없이 안전하게 학습이 가능합니다. **세부 최적화 기법: RLVR 및 RLAIF** * **RLVR (Verifiable Rewards):** 수학적 추론이나 코드 생성처럼 정답이 명확한 객관적 작업에 대해 규칙 기반의 채점기를 사용하여 모델을 개선합니다. * **RLAIF (AI Feedback):** AI가 생성한 피드백을 활용하여 모델의 응답 품질을 높이는 방식으로, 보다 복잡하고 주관적인 맥락이 포함된 작업에 유용합니다. 방대한 데이터를 준비하기 어렵거나 모델 운영 비용을 절감하면서도 높은 정확도를 원하는 기업에게 Amazon Bedrock의 강화 미세 조정은 매우 실용적인 대안이 됩니다. 특히 Amazon Nova 2 Lite 모델을 시작으로 점차 지원 모델이 확대될 예정이므로, 특정 도메인에 특화된 가성비 높은 AI 서비스를 구축하고자 하는 개발팀에게 이 기능을 적극 활용해 볼 것을 추천합니다.

aws

Amazon Bedrock AgentCore adds quality evaluations and policy controls for deploying trusted AI agents (새 탭에서 열림)

Amazon Bedrock AgentCore는 AI 에이전트가 자율적으로 동작할 때 발생할 수 있는 보안 및 품질 제어 문제를 해결하기 위해 정책 제어와 품질 평가 등 새로운 기능을 도입했습니다. 이를 통해 개발자는 에이전트의 권한을 세밀하게 제한하고 실제 운영 환경에서의 성능을 지속적으로 모니터링함으로써, 기업용 수준의 신뢰할 수 있는 AI 에이전트를 대규모로 안전하게 배포할 수 있습니다. **신규 정책 제어(Policy)를 통한 보안 경계 구축** * AgentCore Gateway를 활용하여 에이전트가 도구(Tool)를 호출하기 직전에 정책에 따른 세밀한 권한 검사를 수행함으로써 부적절한 데이터 접근이나 승인되지 않은 작업을 차단합니다. * 정책 제어는 에이전트의 자체 추론 루프(Reasoning Loop) 외부에서 독립적으로 작동하므로, 에이전트의 판단과 상관없이 비즈니스 가드레일을 강제로 적용할 수 있습니다. * 에이전트를 통제 가능한 자율적 행위자로 정의하여 민감한 시스템이나 데이터와 상호작용할 때 발생할 수 있는 리스크를 최소화합니다. **품질 평가(Evaluations)를 활용한 에이전트 신뢰도 검증** * 에이전트의 실제 행동 데이터를 기반으로 정확성(Correctness)과 유용성(Helpfulness) 등의 핵심 지표를 측정할 수 있는 기본 평가 도구를 제공합니다. * 기업의 특정 비즈니스 요구사항에 맞춘 커스텀 평가 지표를 생성하여 실제 고객 대응이나 내부 업무 프로세스에 적합한지 정밀하게 분석할 수 있습니다. * 에이전트 배포 전후의 성능을 정량화함으로써 불확실성을 제거하고 지속적인 품질 개선을 위한 데이터 기반의 인사이트를 확보합니다. **메모리 및 런타임 기능 확장을 통한 사용자 경험 강화** * **에피소드형 메모리(Episodic Memory):** 에이전트가 과거의 경험을 장기적으로 기억하고 학습하여, 유사한 상황이 발생했을 때 일관성 있고 최적화된 해결책을 제시할 수 있도록 돕습니다. * **양방향 스트리밍(Bidirectional Streaming):** 사용자와 에이전트가 동시에 말을 주고받는 자연스러운 대화 흐름을 지원하여 실시간 음성 에이전트 서비스의 반응성을 높였습니다. AI 에이전트의 강력한 자율성을 비즈니스 현장에 도입하려는 조직은 AgentCore의 새로운 정책 제어와 평가 기능을 통해 운영 안정성을 확보해야 합니다. 특히 대규모 데이터 처리나 실시간 고객 응대가 필요한 환경에서는 에피소드형 메모리와 양방향 스트리밍 기능을 결합하여 단순한 챗봇 이상의 고도화된 에이전트 서비스를 구축할 것을 추천합니다.

aws

Amazon S3 Vectors now generally available with increased scale and performance (새 탭에서 열림)

Amazon S3 Vectors가 정식 출시(GA)되어 클라우드 객체 스토리지에서 기본적으로 벡터 데이터를 저장하고 검색할 수 있는 길이 열렸습니다. 기존 전용 벡터 데이터베이스 대비 비용을 최대 90% 절감할 수 있으며, 서버리스 아키텍처를 통해 인프라 관리 부담 없이 대규모 AI 애플리케이션을 구축할 수 있습니다. 이번 정식 버전은 프리뷰 대비 확장성과 성능이 대폭 강화되어, 대규모 RAG(검색 증강 생성) 및 AI 에이전트 워크로드를 안정적으로 지원합니다. **비약적인 확장성 및 성능 향상** * **인덱스 규모 확장:** 단일 인덱스에서 최대 20억 개의 벡터를 지원하며, 벡터 버킷당 총 20조 개의 벡터를 저장할 수 있어 프리뷰 대비 확장성이 40배 향상되었습니다. * **검색 속도 최적화:** 빈번한 쿼리의 경우 응답 속도를 100ms 이하로 단축했으며, 간헐적인 쿼리도 1초 미만의 지연 시간을 유지하여 실시간 대화형 AI에 적합합니다. * **검색 결과 확대:** 쿼리당 반환 가능한 검색 결과 수를 기존 30개에서 100개로 늘려 RAG 애플리케이션에 더 풍부한 컨텍스트를 제공합니다. * **쓰기 처리량 강화:** 초당 최대 1,000건의 PUT 트랜잭션을 지원하여 실시간 데이터 스트리밍 및 대량의 동시 쓰기 작업을 원활하게 처리합니다. **서버리스 아키텍처를 통한 운영 및 비용 효율화** * **완전 관리형 서비스:** 별도의 인프라 설정이나 프로비저닝이 필요 없는 서버리스 구조로, 사용한 만큼만 비용을 지불하는 종량제 모델을 채택했습니다. * **비용 절감:** 전용 벡터 데이터베이스 솔루션과 비교했을 때 벡터 저장 및 쿼리 비용을 최대 90%까지 낮출 수 있어 경제적입니다. * **개발 수명 주기 지원:** 초기 프로토타이핑부터 대규모 프로덕션 배포까지 동일한 스토리지 환경에서 유연하게 대응할 수 있습니다. **에코시스템 통합 및 가용성 확대** * **Amazon Bedrock 연동:** Amazon Bedrock 지식 기반(Knowledge Base)의 벡터 스토리지 엔진으로 정식 지원되어 고성능 RAG 어플리케이션 구축이 용이해졌습니다. * **Amazon OpenSearch 통합:** S3 Vectors를 스토리지 계층으로 사용하면서 OpenSearch의 강력한 검색 및 분석 기능을 결합하여 사용할 수 있습니다. * **지역 확장:** 프리뷰 당시 5개였던 지원 리전을 서울을 포함한 전 세계 14개 AWS 리전으로 확대하여 접근성을 높였습니다. 전용 벡터 DB 도입에 따른 비용과 운영 복잡성이 부담스러웠던 기업이라면, S3의 높은 가용성과 보안을 그대로 누리면서 대규모 벡터 검색을 구현할 수 있는 S3 Vectors 도입을 적극 검토해 보시기 바랍니다. 특히 Amazon Bedrock과의 유연한 통합을 통해 생산성 높은 AI 서비스를 빠르게 시장에 출시할 수 있습니다.

aws

Amazon Bedrock adds 18 fully managed open weight models, including the new Mistral Large 3 and Ministral 3 models (새 탭에서 열림)

Amazon Bedrock이 Mistral Large 3와 Ministral 3를 포함한 18개의 새로운 오픈 웨이트(Open weight) 모델을 추가하며, 총 100여 개의 서버리스 모델 라인업을 구축하게 되었습니다. 개발자들은 인프라를 변경하거나 코드를 재작성할 필요 없이 단일 API를 통해 구글, 엔비디아, 오픈AI 등 선도적인 AI 기업들의 최신 모델을 자유롭게 선택하고 평가할 수 있습니다. 이번 확장을 통해 기업들은 비용 효율성과 성능 사이의 최적점을 찾아 비즈니스 특성에 맞는 생성형 AI 애플리케이션을 더욱 신속하게 구축할 수 있는 환경을 갖추게 되었습니다. **Mistral AI의 최신 모델 라인업** * **Mistral Large 3**: 긴 문맥(Long-context) 이해와 멀티모달 추론, 코딩 능력에 최적화된 모델로, 복잡한 엔터프라이즈 지식 작업과 에이전트 워크플로우에 강력한 성능을 발휘합니다. * **Ministral 3 3B**: 에지(Edge) 환경에 최적화된 소형 모델로, 단일 GPU에서 효율적으로 구동되며 실시간 번역, 데이터 추출, 이미지 캡셔닝 등 저지연 애플리케이션에 적합합니다. * **Ministral 3 8B/14B**: 텍스트와 시각 정보 처리에 있어 동급 최강의 성능을 제공하며, 하드웨어 제약이 있는 온디바이스 환경이나 프라이빗 AI 배포 시 고급 에이전트 기능을 구현하는 데 사용됩니다. **다양한 산업군을 위한 오픈 웨이트 모델 확장** * **Google Gemma 3 4B**: 노트북이나 모바일 기기에서 로컬로 실행할 수 있는 효율적인 다국어 모델로, 개인화된 온디바이스 AI 경험을 제공하는 데 유리합니다. * **광범위한 파트너십**: 구글, MiniMax AI, Moonshot AI, NVIDIA, OpenAI, Qwen 등의 최신 모델이 포함되어, 특정 언어나 산업 도메인에 특화된 선택지가 대폭 늘어났습니다. * **서버리스 및 통합 관리**: 모든 모델은 AWS가 완전히 관리하는 서버리스 방식으로 제공되므로, 사용자들은 별도의 GPU 서버 관리 부담 없이 API 호출만으로 최첨단 모델을 즉시 활용할 수 있습니다. **Bedrock 플랫폼의 유연성과 편의성** * **통합 API 아키텍처**: 서로 다른 제조사의 모델이라도 동일한 API 구조를 사용하므로, 성능 평가 결과에 따라 애플리케이션의 모델을 손쉽게 교체하거나 업그레이드할 수 있습니다. * **지속적인 큐레이션**: AWS는 고객의 요구사항과 기술적 발전을 모니터링하여 유망한 신규 모델과 검증된 업계 표준 모델을 지속적으로 업데이트하고 있습니다. 개발자는 Amazon Bedrock의 통합 인터페이스를 활용해 각 모델의 벤치마크와 비용 효율성을 비교 분석한 후, 서비스 규모와 하드웨어 환경(에지 컴퓨팅 vs 클라우드)에 가장 적합한 모델을 선별하여 도입하는 전략이 필요합니다. 특히 Ministral 시리즈와 같은 에지 최적화 모델은 클라우드 비용 절감과 데이터 보안이 중요한 프로젝트에서 훌륭한 대안이 될 것입니다.