AWS / vector-db

4 개의 포스트

aws

Amazon OpenSearch Service improves vector database performance and cost with GPU acceleration and auto-optimization (새 탭에서 열림)

Amazon OpenSearch Service가 벡터 데이터베이스의 성능을 극대화하고 비용을 절감하기 위해 서버리스 GPU 가속 및 자동 최적화 기능을 도입했습니다. 이 기능을 통해 사용자는 수십억 건 규모의 벡터 인덱스를 기존보다 최대 10배 빠른 속도와 4분의 1 수준의 비용으로 구축할 수 있으며, 복잡한 수동 튜닝 없이도 최적의 검색 품질을 유지할 수 있습니다. 결과적으로 생성형 AI 애플리케이션 개발에 필요한 대규모 벡터 검색 환경을 훨씬 더 경제적이고 효율적으로 운영할 수 있게 되었습니다. **GPU 가속을 통한 대규모 벡터 데이터베이스 구축** * **성능 및 비용 혁신:** 비가속 환경 대비 인덱싱 속도는 10배 빨라진 반면, 관련 비용은 75%까지 절감되었습니다. 이를 통해 10억 개 규모의 벡터 데이터베이스를 1시간 이내에 생성할 수 있는 놀라운 확장성을 제공합니다. * **서버리스 관리 모델:** 사용자가 직접 GPU 인스턴스를 할당하거나 관리할 필요가 없으며, 실제 처리량에 따른 OCU(OpenSearch Compute Units) 단위로만 비용을 지불하면 됩니다. * **보안 및 통합:** 가속화된 작업은 사용자의 VPC(Amazon Virtual Private Cloud) 내에서 안전하게 격리되어 실행되며, 기존 OpenSearch 서비스의 워크플로우 내에서 자연스럽게 통합됩니다. **자동 최적화(Auto-optimization) 기반 성능 튜닝** * **자동화된 균형 탐색:** 벡터 데이터의 특성에 맞춰 검색 지연 시간, 검색 품질(재현율), 메모리 요구 사항 사이의 최적의 균형점을 시스템이 자동으로 찾아냅니다. * **전문성 장벽 완화:** 과거에는 벡터 인덱스 최적화에 몇 주간의 수동 튜닝과 전문 지식이 필요했으나, 이제는 설정 하나만으로 기본 구성보다 뛰어난 비용 효율성과 재현율을 확보할 수 있습니다. * **유연한 적용 범위:** 새 도메인이나 컬렉션을 생성할 때는 물론, 기존에 운영 중인 환경에서도 설정을 업데이트하여 즉시 최적화 기능을 활성화할 수 있습니다. **실제 적용 방법 및 권장 사항** 생성형 AI 애플리케이션이나 대규모 지식 베이스를 구축하려는 개발자는 AWS 콘솔의 '고급 기능' 섹션에서 GPU 가속을 활성화하는 것만으로 즉시 성능 향상을 경험할 수 있습니다. 기술적으로는 인덱스 설정 시 `index.knn.remote_index_build.enabled` 옵션을 `true`로 설정하여 GPU 기반의 원격 인덱스 빌드를 활성화할 것을 권장하며, 이를 통해 대량의 데이터를 벌크(Bulk) API로 처리할 때 최적의 가속 효과를 얻을 수 있습니다.

aws

Amazon S3 Vectors now generally available with increased scale and performance (새 탭에서 열림)

Amazon S3 Vectors가 정식 출시(GA)되어 클라우드 객체 스토리지에서 기본적으로 벡터 데이터를 저장하고 검색할 수 있는 길이 열렸습니다. 기존 전용 벡터 데이터베이스 대비 비용을 최대 90% 절감할 수 있으며, 서버리스 아키텍처를 통해 인프라 관리 부담 없이 대규모 AI 애플리케이션을 구축할 수 있습니다. 이번 정식 버전은 프리뷰 대비 확장성과 성능이 대폭 강화되어, 대규모 RAG(검색 증강 생성) 및 AI 에이전트 워크로드를 안정적으로 지원합니다. **비약적인 확장성 및 성능 향상** * **인덱스 규모 확장:** 단일 인덱스에서 최대 20억 개의 벡터를 지원하며, 벡터 버킷당 총 20조 개의 벡터를 저장할 수 있어 프리뷰 대비 확장성이 40배 향상되었습니다. * **검색 속도 최적화:** 빈번한 쿼리의 경우 응답 속도를 100ms 이하로 단축했으며, 간헐적인 쿼리도 1초 미만의 지연 시간을 유지하여 실시간 대화형 AI에 적합합니다. * **검색 결과 확대:** 쿼리당 반환 가능한 검색 결과 수를 기존 30개에서 100개로 늘려 RAG 애플리케이션에 더 풍부한 컨텍스트를 제공합니다. * **쓰기 처리량 강화:** 초당 최대 1,000건의 PUT 트랜잭션을 지원하여 실시간 데이터 스트리밍 및 대량의 동시 쓰기 작업을 원활하게 처리합니다. **서버리스 아키텍처를 통한 운영 및 비용 효율화** * **완전 관리형 서비스:** 별도의 인프라 설정이나 프로비저닝이 필요 없는 서버리스 구조로, 사용한 만큼만 비용을 지불하는 종량제 모델을 채택했습니다. * **비용 절감:** 전용 벡터 데이터베이스 솔루션과 비교했을 때 벡터 저장 및 쿼리 비용을 최대 90%까지 낮출 수 있어 경제적입니다. * **개발 수명 주기 지원:** 초기 프로토타이핑부터 대규모 프로덕션 배포까지 동일한 스토리지 환경에서 유연하게 대응할 수 있습니다. **에코시스템 통합 및 가용성 확대** * **Amazon Bedrock 연동:** Amazon Bedrock 지식 기반(Knowledge Base)의 벡터 스토리지 엔진으로 정식 지원되어 고성능 RAG 어플리케이션 구축이 용이해졌습니다. * **Amazon OpenSearch 통합:** S3 Vectors를 스토리지 계층으로 사용하면서 OpenSearch의 강력한 검색 및 분석 기능을 결합하여 사용할 수 있습니다. * **지역 확장:** 프리뷰 당시 5개였던 지원 리전을 서울을 포함한 전 세계 14개 AWS 리전으로 확대하여 접근성을 높였습니다. 전용 벡터 DB 도입에 따른 비용과 운영 복잡성이 부담스러웠던 기업이라면, S3의 높은 가용성과 보안을 그대로 누리면서 대규모 벡터 검색을 구현할 수 있는 S3 Vectors 도입을 적극 검토해 보시기 바랍니다. 특히 Amazon Bedrock과의 유연한 통합을 통해 생산성 높은 AI 서비스를 빠르게 시장에 출시할 수 있습니다.