Google Research / differential-privacy

10 개의 포스트

google

A differentially private framework for gaining insights into AI chatbot use (새 탭에서 열림)

Google Research가 발표한 'Urania' 프레임워크는 차분 프라이버시(Differential Privacy, DP)를 활용하여 사용자 대화의 비밀을 엄격하게 보호하면서도 AI 챗봇 사용 패턴에 대한 고차원적인 인사이트를 도출합니다. 기존의 휴리스틱한 개인정보 제거 방식과 달리, 이 모델은 수학적으로 증명된 프라이버시 보장을 제공하여 특정 개인의 데이터가 분석 결과에 노출되는 것을 원천적으로 차단합니다. 이를 통해 플랫폼 운영자는 프라이버시 침해 우려 없이 서비스 개선 및 안전 정책 준수를 위한 대규모 언어 모델(LLM) 사용 트렌드를 분석할 수 있습니다. **기존 방식의 한계와 수학적 프라이버시의 도입** * 기존의 CLIO와 같은 프레임워크는 LLM이 대화에서 개인식별정보(PII)를 스스로 제거하도록 유도하는 휴리스틱 방식에 의존하여, 모델 진화에 따른 보안 유지나 엄격한 감사가 어려웠습니다. * Urania는 차분 프라이버시의 '사후 처리(Post-processing)'와 '합성(Composition)' 속성을 활용하여, 파이프라인의 각 단계에서 발생하는 프라이버시 손실을 수학적 예산(ε) 내에서 관리합니다. * 이러한 접근법은 프롬프트 주입 공격(Prompt Injection)과 같은 위협으로부터 자유로우며, LLM이 원본 대화 내용을 직접 보지 못하게 설계되어 보안성을 극대화합니다. **3단계 데이터 보호 파이프라인 구성** * **DP 클러스터링**: 대화 내용을 수치적 임베딩으로 변환한 뒤, 특정 대화가 클러스터 중심에 과도한 영향을 미치지 않도록 제한하는 알고리즘을 사용하여 유사한 대화들을 그룹화합니다. * **DP 키워드 추출**: 클러스터 내에서 빈번하게 등장하는 키워드를 집계할 때 노이즈를 추가하는 히스토그램 메커니즘을 적용하여, 여러 사용자에게 공통된 키워드만 추출하고 고유한 민감 정보는 걸러냅니다. * LLM 가이드 선택: LLM이 대화별로 상위 5개 키워드를 생성하게 함. * DP TF-IDF: 단어 빈도와 문서 역빈도를 계산하여 가중치를 부여하는 전통적 방식의 DP 버전. * 사전 정의 목록 활용: 공개 데이터를 통해 구축된 키워드 후보군 중에서 LLM이 적합한 항목을 선택하게 함. * **LLM 기반 요약**: 요약 단계의 LLM은 원본 대화가 아닌 익명화된 '키워드 리스트'만을 입력받아 최종 인사이트를 생성하며, 이는 프라이버시 보존 결과물에 대한 안전한 사후 처리에 해당합니다. **프라이버시와 분석 유용성의 균형** * 성능 평가 결과, 프라이버시 보호 강도(낮은 ε 값)가 높을수록 요약의 구체성은 다소 하락하는 트레이드오프 관계가 관찰되었습니다. * 그럼에도 불구하고 Urania는 단순한 비공개 방식(Simple-CLIO)과 비교했을 때, 수학적 안전성을 담보하면서도 실무에 적용 가능한 수준의 고차원적 사용 패턴 요약을 제공함을 입증했습니다. * 이 프레임워크는 데이터 분석의 품질을 유지하면서도 사용자의 신뢰를 보장해야 하는 기술 기업들에게 표준화된 개인정보 보호 분석 가이드라인을 제시합니다. 조직에서 대규모 챗봇 데이터를 분석해야 한다면, 단순히 LLM의 필터링 능력에 의존하기보다 Urania와 같이 수학적으로 증명된 차분 프라이버시 파이프라인을 구축하는 것이 장기적인 보안 및 규제 대응 측면에서 권장됩니다.

google

Differentially private machine learning at scale with JAX-Privacy (새 탭에서 열림)

Google DeepMind와 Google Research는 고성능 컴퓨팅 라이브러리인 JAX를 기반으로 대규모 차분 프라이버시(Differential Privacy, DP) 머신러닝을 구현할 수 있는 **JAX-Privacy 1.0**을 정식 공개했습니다. 이 라이브러리는 현대적인 파운데이션 모델의 학습 규모에 맞춰 설계되었으며, 복잡한 프라이버시 알고리즘을 효율적이고 모듈화된 방식으로 제공하여 연구자와 개발자가 데이터 보안을 유지하면서도 모델 성능을 최적화할 수 있도록 돕습니다. JAX의 강력한 병렬 처리 기능과 최신 DP 연구 성과를 결합함으로써, 이론 중심의 프라이버시 기술을 실제 대규모 AI 프로덕션 환경에 적용할 수 있는 기틀을 마련했습니다. ### 대규모 모델 학습을 위한 프라이버시 기술의 필요성 * **DP 구현의 기술적 난제:** 차분 프라이버시의 표준 방식인 DP-SGD는 개별 데이터별 그래디언트 클리핑(per-example gradient clipping)과 정밀한 노이즈 추가를 요구하는데, 이는 현대적 대규모 모델 학습에서 계산 비용이 매우 높고 구현이 까다롭습니다. * **JAX 생태계와의 결합:** JAX-Privacy는 JAX의 자동 미분, JIT 컴파일, 그리고 `vmap`(자동 벡터화) 및 `shard_map`(병렬 처리) 기능을 활용하여 수천 개의 가속기에서 대규모 모델을 효율적으로 학습할 수 있는 환경을 제공합니다. * **확장성 문제 해결:** 기존 프레임워크들이 대규모 환경에서 겪던 유연성 부족 문제를 해결하기 위해, 데이터 병렬화 및 모델 병렬화를 기본적으로 지원하도록 설계되었습니다. ### JAX-Privacy 1.0의 핵심 구성 요소 * **핵심 빌딩 블록:** 그래디언트 클리핑, 노이즈 추가, 데이터 배치 구성 등 DP의 기본 프리미티브를 효율적으로 구현하여 DP-SGD 및 DP-FTRL과 같은 알고리즘을 손쉽게 구축할 수 있습니다. * **최신 알고리즘 지원:** 반복 작업 간에 상관관계가 있는 노이즈를 주입하여 성능을 높이는 'DP 행렬 분해(Matrix Factorization)'와 같은 최첨단 연구 성과가 포함되어 있습니다. * **대규모 배치 처리 최적화:** 프라이버시와 유틸리티 간의 최적의 균형을 찾기 위해 필수적인 대규모 가변 크기 배치를 처리할 수 있도록 마이크로 배칭(micro-batching) 및 패딩 도구를 제공합니다. * **모듈성 및 호환성:** Flax(신경망 아키텍처) 및 Optax(최적화 도구)와 같은 JAX 생태계의 라이브러리들과 매끄럽게 연동되어 기존 워크플로우에 쉽게 통합됩니다. ### 프라이버시 보증을 위한 감사 및 검증 도구 * **프라이버시 어카운팅(Accounting):** 학습 과정에서 발생하는 프라이버시 소모량($\epsilon$, 에psilon)을 정확하게 계산하고 추적할 수 있는 도구를 포함합니다. * **실증적 감사(Auditing):** 구현된 모델이 실제로 프라이버시 보증을 준수하는지 실험적으로 검증하고 취약점을 찾아낼 수 있는 감사 기능을 제공하여 신뢰성을 높였습니다. * **재현성 확보:** Google 내부에서 사용되던 검증된 코드를 공개함으로써 외부 연구자들이 최신 DP 학습 기법을 재현하고 검증할 수 있는 표준을 제시합니다. ### 실용적인 활용 제안 민감한 개인 정보를 포함한 데이터로 대규모 언어 모델(LLM)을 미세 조정하거나 파운데이션 모델을 학습시켜야 하는 조직에게 JAX-Privacy 1.0은 필수적인 도구입니다. 개발자들은 GitHub에 공개된 공식 저장소를 통해 제공되는 튜토리얼을 참고하여, 기존의 JAX 기반 학습 파이프라인에 최소한의 코드 변경만으로 강력한 차분 프라이버시 보호 기능을 도입할 것을 권장합니다.

google

Toward provably private insights into AI use (새 탭에서 열림)

구글 리서치는 생성형 AI 서비스의 사용 패턴을 분석하면서도 사용자 프라이버시를 수학적으로 보장할 수 있는 '증명 가능한 개인정보 보호 인사이트(PPI)' 시스템을 공개했습니다. 이 시스템은 신뢰 실행 환경(TEE), 차분 프라이버시(DP), 그리고 대규모 언어 모델(LLM)을 결합하여 비정형 데이터를 안전하게 분석하는 환경을 구축했습니다. 이를 통해 개발자는 원본 데이터에 접근하지 않고도 AI 도구의 활용 사례와 개선점을 파악할 수 있으며, 모든 처리 과정은 오픈 소스로 공개되어 외부 검증이 가능합니다. **증명 가능한 개인정보 보호 인사이트(PPI)의 구동 원리** * **기기 내 데이터 보호:** 사용자 기기에서 분석할 데이터를 결정한 후 암호화하여 전송하며, 이 데이터는 서버의 TEE 내에서만 복호화될 수 있습니다. * **기밀 연합 분석(CFA) 활용:** Gboard 등에 적용되었던 기술을 발전시켜, 데이터 처리 단계를 기기가 사전에 승인한 로직으로만 제한하고 인간의 개입을 원천 차단합니다. * **데이터 전문가 LLM:** TEE 내부에 배치된 Gemma 3 모델이 "사용자가 어떤 주제를 논의 중인가?"와 같은 특정 질문에 답하는 방식으로 비정형 데이터를 정형화된 요약 정보로 변환합니다. **차분 프라이버시를 통한 익명성 보장** * **통계적 노이즈 추가:** LLM이 추출한 범주형 답변들을 집계할 때 차분 프라이버시 알고리즘을 적용하여 히스토그램을 생성합니다. * **개인 식별 방지:** 특정 개인의 데이터가 전체 통계 결과에 유의미한 영향을 미치지 않도록 설계되어, 분석가가 악의적인 프롬프트를 사용하더라도 개별 사용자를 식별할 수 없습니다. * **프롬프트 유연성:** DP 보증은 집계 알고리즘 단계에서 이루어지므로, 분석가는 프라이버시 침해 걱정 없이 LLM의 프롬프트를 자유롭게 변경하며 다양한 인사이트를 얻을 수 있습니다. **투명성 및 외부 검증 가능성** * **전 과정 오픈 소스화:** 개인정보 보호 집계 알고리즘부터 TEE 스택까지 모든 요소를 'Google Parfait' 프로젝트를 통해 오픈 소스로 공개했습니다. * **재현 가능한 빌드:** 외부 감사자가 공개된 코드와 실제 서버에서 실행 중인 바이너리가 일치하는지 확인할 수 있도록 재현 가능한 빌드 시스템을 지원합니다. * **실제 적용 사례:** Pixel 기기의 녹음기(Recorder) 앱 분석에 이 기술을 적용하여, 오픈 소스 Gemma 모델이 사용자의 녹음 데이터 요약 기능을 어떻게 활용하는지 안전하게 파악하고 있습니다. 생성형 AI의 성능 개선을 위해 실사용 데이터 분석이 필수적인 상황에서, PPI 시스템은 기술적 신뢰를 바탕으로 한 프라이버시 보호의 새로운 기준을 제시합니다. 개발자들은 구글이 공개한 기술 스택을 활용해 데이터 활용의 투명성을 높이고, 사용자의 신뢰를 얻으면서도 정교한 서비스 개선 인사이트를 도출할 수 있을 것입니다.

google

A picture's worth a thousand (private) words: Hierarchical generation of coherent synthetic photo albums (새 탭에서 열림)

구글 리서치(Google Research)는 차분 프라이버시(Differential Privacy, DP) 기술을 적용하여 데이터의 프라이버시를 완벽히 보호하면서도, 사진 앨범과 같이 복잡한 구조를 가진 합성 데이터를 생성하는 새로운 방법론을 제시했습니다. 이 방식은 이미지를 직접 생성하는 대신 중간 단계로 '텍스트' 표현을 활용하고 이를 계층적으로 구성함으로써, 개별 사진 간의 주제적 일관성을 유지하는 동시에 연산 효율성까지 확보했습니다. 결과적으로 조직은 복잡한 분석 도구마다 프라이버시 기술을 개별 적용할 필요 없이, 안전하게 생성된 합성 앨범 데이터셋만으로도 고도화된 모델 학습과 분석을 수행할 수 있게 됩니다. ### 중간 텍스트 표현을 활용한 프라이버시 강화 기존의 합성 데이터 생성 방식이 단일 이미지나 짧은 텍스트에 치중했던 것과 달리, 본 연구는 이미지를 텍스트로 변환하는 과정을 핵심 기제로 활용합니다. * **손실 압축을 통한 프라이버시 증진:** 이미지를 상세한 텍스트 캡션으로 설명하는 과정은 본질적으로 정보의 일부를 생략하는 '손실 연산'이며, 이는 원본 데이터의 미세한 고유 정보를 보호하는 자연스러운 방어막 역할을 합니다. * **LLM의 강점 활용:** 거대언어모델(LLM)의 뛰어난 텍스트 생성 및 요약 능력을 활용하여, 원본 이미지의 핵심적인 의미 정보(Semantic information)를 효과적으로 포착합니다. * **리소스 최적화:** 이미지 생성은 비용이 많이 들지만 텍스트 생성은 상대적으로 저렴합니다. 텍스트 단계에서 먼저 콘텐츠를 필터링하고 선별함으로써, 불필요한 이미지 생성에 소요되는 연산 자원을 절약할 수 있습니다. ### 계층적 구조를 통한 앨범의 일관성 유지 사진 앨범은 여러 장의 사진이 하나의 주제나 캐릭터를 공유해야 하므로 단순한 개별 이미지 생성보다 난이도가 높습니다. 연구팀은 이를 해결하기 위해 계층적 생성 전략을 채택했습니다. * **2단계 모델 구조:** 앨범 전체의 요약을 생성하는 모델과, 이 요약을 바탕으로 개별 사진의 상세 캡션을 생성하는 모델을 분리하여 학습시킵니다. * **문맥적 일관성 확보:** 모든 개별 사진 캡션이 동일한 '앨범 요약'을 문맥(Context)으로 공유하기 때문에, 생성된 결과물들이 서로 조화를 이루며 하나의 일관된 스토리를 형성하게 됩니다. * **연산 효율성 증대:** 트레이닝 비용은 컨텍스트 길이에 따라 제곱으로 증가합니다. 하나의 긴 컨텍스트를 처리하는 대신 짧은 컨텍스트를 가진 두 개의 모델을 학습시킴으로써 전체적인 연산 비용을 대폭 낮췄습니다. ### 프라이버시가 보장된 학습 알고리즘 합성 데이터가 원본 사용자의 고유한 정보를 유출하지 않도록 엄격한 수학적 증명을 기반으로 하는 학습 기술을 적용했습니다. * **DP-SGD 적용:** DP-SGD(Differentially Private Stochastic Gradient Descent) 알고리즘을 사용하여 모델을 미세 조정(Fine-tuning)함으로써, 생성된 데이터셋이 실제 데이터의 공통적인 패턴은 학습하되 특정 개인의 세부 사항은 포함하지 않도록 보장합니다. * **안전한 데이터 대체제:** 이렇게 생성된 합성 데이터는 프라이버시 위험이 제거된 상태이므로, 데이터 과학자들은 별도의 복잡한 보안 절차 없이 표준적인 분석 기법을 즉시 적용할 수 있습니다. 이 방법론은 단순히 사진 앨범에 국한되지 않고 비디오나 복합 문서와 같이 구조화된 멀티모달 데이터를 안전하게 생성하는 데 광범위하게 응용될 수 있습니다. 고품질의 데이터 확보가 어렵거나 프라이버시 규제가 엄격한 환경에서, 이와 같은 계층적 합성 데이터 생성 방식은 안전하고 효율적인 대안이 될 것입니다.

google

VaultGemma: The world's most capable differentially private LLM (새 탭에서 열림)

구글 리서치는 차분 프라이버시(Differential Privacy, DP) 기술을 적용해 밑바닥부터 학습시킨 모델 중 세계 최고 성능을 자랑하는 'VaultGemma'를 공개했습니다. 이 모델은 새롭게 정립된 'DP 스케일링 법칙'을 바탕으로 연산량, 프라이버시 예산, 모델 성능 사이의 복잡한 트레이드오프를 최적화하여 설계되었습니다. 10억 개의 파라미터를 보유한 VaultGemma는 강력한 프라이버시 보장과 동시에 실용적인 성능을 입증하며 차세대 보안 AI 개발의 새로운 기준을 제시합니다. ### 차분 프라이버시 환경을 위한 새로운 스케일링 법칙 * **노이즈-배치 비율(Noise-batch ratio)의 중요성:** DP 학습 시 추가되는 무작위 노이즈와 데이터 그룹(배치) 크기 사이의 비율이 모델의 학습 능력을 결정하는 핵심 변수임을 확인했습니다. * **최적 학습 구성의 변화:** 일반적인 모델 학습과 달리, DP 환경에서는 모델 크기를 다소 줄이는 대신 배치 크기를 획기적으로 키우는 것이 성능 최적화에 훨씬 유리하다는 사실을 밝혀냈습니다. * **예산 간의 시너지 효과:** 프라이버시 예산(epsilon)만 늘리는 것은 효율이 낮으며, 반드시 연산 예산(FLOPs)이나 데이터 예산(tokens) 증설이 병행되어야만 성능이 유의미하게 향상됩니다. ### 대규모 학습을 위한 알고리즘 혁신 * **셔플링 기반 프라이버시 증폭:** 대규모 TPU 클러스터에서 구현하기 어려운 포아송 샘플링(Poisson sampling) 대신, 데이터를 무작위로 섞어 프라이버시 효과를 높이는 '셔플 배치 DP-SGD' 기법을 도입했습니다. * **최적화 도구 및 구조:** Gemma 2 아키텍처를 기반으로 하며, DP-AdamW 옵티마이저를 사용해 학습 안정성을 확보하고 계산 효율성을 극대화했습니다. * **프라이버시 회계(Privacy Accounting):** 엄격한 수학적 증명을 통해 $\epsilon=8$, $\delta=10^{-12}$ 수준의 프라이버시 보장을 실현했습니다. ### 성능 평가 및 실전 비교 * **기존 모델 압도:** VaultGemma 1B 모델은 자신보다 훨씬 큰 규모의 DP 모델인 DP-OPT 6.7B보다 MMLU, GSM8K 등 주요 벤치마크에서 월등히 높은 성능을 기록했습니다. * **비 DP 모델과의 경쟁력:** 프라이버시 보호 기술이 적용되었음에도 불구하고, 프라이버시 기능이 없는 표준 GPT-2 모델의 성능을 상회하는 등 실용 가능성을 입증했습니다. * **오픈소스 공개:** 연구 커뮤니티의 발전을 위해 모델 가중치와 기술 보고서를 Hugging Face와 Kaggle에 공개하여 누구나 안전한 AI를 연구할 수 있도록 지원합니다. VaultGemma는 민감한 개인정보나 보안이 중요한 데이터를 다루는 기업 및 연구자들에게 강력한 도구가 될 것입니다. 특히 데이터 암기(Memorization)를 수학적으로 방지해야 하는 환경에서, 이 모델은 프라이버시와 성능이라는 두 마리 토끼를 잡을 수 있는 최적의 출발점을 제공합니다.

google

Securing private data at scale with differentially private partition selection (새 탭에서 열림)

구글 리서치는 대규모 데이터셋에서 개인정보를 보호하면서도 유용한 데이터를 추출할 수 있는 혁신적인 차분 프라이버시(Differential Privacy, DP) 파티션 선택 알고리즘인 'MAD(MaxAdaptiveDegree)'를 공개했습니다. 이 알고리즘은 수천억 개의 아이템이 포함된 방대한 데이터를 처리할 수 있는 병렬 구조를 갖추고 있으며, 기존 비적응형 방식보다 훨씬 더 많은 유효 데이터를 안전하게 식별해 냅니다. 이를 통해 연구자들은 개별 사용자의 민감한 정보를 노출하지 않으면서도 AI 모델 학습이나 데이터 분석에 필요한 고품질의 데이터셋을 확보할 수 있게 되었습니다. **차분 프라이버시(DP) 파티션 선택의 역할** * **개념 정의:** 수많은 사용자가 기여한 방대한 데이터 집합에서 특정 임계치 이상의 빈도를 가진 공통 아이템(예: 자주 사용되는 단어나 n-gram)을 안전하게 선택하는 프로세스입니다. * **프라이버시 보호:** 특정 개별 사용자의 데이터 포함 여부를 알 수 없도록 제어된 노이즈를 추가하며, 노이즈가 섞인 상태에서도 충분히 공통적인 아이템만 최종 리스트에 포함합니다. * **활용 분야:** 대규모 텍스트 코퍼스의 어휘 추출, 데이터 스트림 분석, 사용자 데이터 기반 히스토그램 생성, 프라이버시 보존형 모델 미세 조정(Fine-tuning)의 효율성 증대 등에 필수적입니다. **기존 가중치 산정 방식의 한계** * **표준 패러다임:** 일반적으로 '가중치 계산(빈도 측정) → 노이즈 추가(가우시안 노이즈 등) → 필터링(임계값 적용)'의 3단계를 거칩니다. * **가중치 낭비:** 기존의 비적응형 방식은 매우 인기 있는 아이템에 필요 이상의 가중치를 할당하는 경향이 있으며, 이로 인해 임계값 바로 아래에 있는 유용한 아이템들이 노이즈에 의해 삭제되는 문제가 발생합니다. * **확장성 문제:** 기존의 순차적(Sequential) 알고리즘은 현대의 거대 데이터셋을 처리하기에 속도가 너무 느려 실무 적용에 한계가 있었습니다. **적응형 가중치 재배분을 통한 MAD 알고리즘의 혁신** * **적응형 가중치(Adaptive Weighting):** MAD 알고리즘은 아이템 간의 가중치를 독립적으로 두지 않고, 다른 사용자의 기여도를 고려하여 전략적으로 가중치를 재할당합니다. * **효율적 재배분:** 임계값을 훨씬 상회하는 인기 아이템의 '과잉 가중치'를 식별하고, 이를 임계값 근처에 있는 아이템들에 재배분하여 더 많은 유효 아이템이 프라이버시 기준을 통과하도록 돕습니다. * **병렬 대규모 처리:** 수천억 개의 아이템을 동시에 처리할 수 있는 병렬 구조로 설계되어, 기존 순차 알고리즘 대비 최대 1,000배 더 큰 규모의 데이터셋까지 확장 가능합니다. * **성능 유지:** 가중치를 재배분하면서도 차분 프라이버시의 핵심인 '낮은 민감도(Low-sensitivity)'와 계산 효율성을 그대로 유지합니다. **실용적 의의 및 권고** 데이터 규모가 커질수록 프라이버시 보호와 데이터 유용성 사이의 균형을 맞추는 것이 어려워지지만, MAD 알고리즘은 병렬 처리를 통해 이 문제를 해결했습니다. 대규모 사용자 데이터를 다루는 연구자나 엔지니어는 구글이 오픈소스로 공개한 'DP 파티션 선택' 라이브러리를 활용하여, 데이터의 유실을 최소화하면서도 강력한 프라이버시 보증을 제공하는 데이터 파이프라인을 구축할 것을 권장합니다.

google

Beyond billion-parameter burdens: Unlocking data synthesis with a conditional generator (새 탭에서 열림)

구글 리서치에서 발표한 **CTCL(Data Synthesis with ConTrollability and CLustering)** 프레임워크는 수십억 개의 파라미터를 가진 대규모 언어 모델(LLM) 없이도 고품질의 차분 프라이버시(DP) 합성 데이터를 생성할 수 있는 혁신적인 방법론을 제시합니다. 1억 4천만 개의 파라미터를 가진 경량 모델을 활용함으로써 자원이 제한된 환경에서도 효과적인 데이터 합성을 가능하게 하며, 프라이버시 보존과 데이터 유용성 사이의 균형을 성공적으로 달성했습니다. 이 방식은 기존 LLM 미세 조정 방식보다 비용 효율적이면서도 특정 주제별 분포를 정확하게 재현할 수 있다는 결론을 도출했습니다. ### 기존 합성 데이터 생성의 한계와 CTCL의 등장 * **기존 방식의 문제점:** 차분 프라이버시(DP)를 준수하는 대규모 합성 데이터를 만들려면 일반적으로 수십억 파라미터 규모의 LLM을 미세 조정해야 하므로 막대한 계산 비용이 발생합니다. * **API 기반 방식의 한계:** 최근 제안된 Aug-PE나 Pre-Text 같은 알고리즘은 모델 직접 학습 대신 API를 활용하지만, 수동 프롬프트에 의존도가 높고 프라이빗 정보를 데이터 선택 과정에 효과적으로 반영하지 못하는 단점이 있습니다. * **CTCL의 대안:** CTCL은 경량 모델(140M BART-base)을 사용하면서도, 프라이빗 데이터의 주제 분포를 자동으로 매칭하는 조건부 생성 방식을 채택하여 이러한 제약을 극복합니다. ### 핵심 구성 요소: CTCL-Topic과 CTCL-Generator * **CTCL-Topic (주제 모델):** 위키피디아 데이터를 기반으로 구축된 범용 주제 모델입니다. 약 600만 개의 문서를 1,000개의 클러스터(주제)로 분류하고, 각 주제를 대표하는 10개의 키워드를 추출하여 데이터의 고차원적 테마를 포착합니다. * **CTCL-Generator (조건부 생성기):** 1억 4천만 파라미터 규모의 BART-base 모델을 기반으로 합니다. Gemma-2-2B를 이용해 생성한 4억 3천만 개의 '설명-문서' 쌍으로 사전 학습되어, 특정 키워드나 문서 유형이 주어지면 그에 맞는 내용을 생성하는 강력한 제어 능력을 갖췄습니다. ### 3단계 데이터 합성 프로세스 1. **사전 개발:** 대규모 공개 코퍼스를 사용하여 CTCL-Topic과 CTCL-Generator를 단 한 번 개발합니다. 이 모델들은 이후 다양한 프라이빗 도메인에 범용적으로 적용될 수 있습니다. 2. **프라이빗 도메인 학습:** 프라이빗 데이터 세트의 주제별 분포(히스토그램)를 DP 방식으로 수집합니다. 동시에 프라이빗 문서에서 추출된 주제 키워드를 활용해 CTCL-Generator를 DP 미세 조정하여 해당 도메인의 특성을 학습시킵니다. 3. **합성 데이터 생성:** 수집된 DP 주제 히스토그램의 비율에 맞춰 생성 모델을 샘플링합니다. DP의 '후처리 속성(Post-processing property)' 덕분에, 한 번 학습된 모델로부터 추가적인 프라이버시 비용 소모 없이 무제한으로 합성 데이터를 생성할 수 있습니다. ### 성능 평가 및 실무적 시사점 * **성능 우위:** 다양한 데이터 세트에서 평가한 결과, 특히 강력한 프라이버시 보장(Strong DP) 조건 하에서 기존 베이스라인 모델들을 일관되게 능가하는 성능을 보였습니다. * **확장성 및 효율성:** 수십억 파라미터 모델을 쓰지 않고도 주제별 분포 매칭이 가능하며, Aug-PE 알고리즘 대비 뛰어난 확장성을 입증했습니다. * **실용적 권장:** 자원이 제한된 환경에서 프라이버시를 보호하며 특정 도메인의 텍스트 데이터를 대량으로 생성해야 하는 경우, 무거운 LLM 미세 조정 대신 CTCL과 같은 경량 조건부 생성 프레임워크를 도입하는 것이 비용과 품질 면에서 매우 효율적인 전략이 될 수 있습니다.

google

Fine-tuning LLMs with user-level differential privacy (새 탭에서 열림)

Google Research는 대규모 언어 모델(LLM)을 사용자 수준의 차분 프라이버시(User-level Differential Privacy)를 유지하며 미세 조정하는 알고리즘을 연구하고 개선했습니다. 기존의 예시 수준 프라이버시보다 강력한 이 기법은 모델이 특정 사용자의 전체 데이터 포함 여부를 노출하지 않도록 보장하지만, 모델이 커질수록 노이즈가 증가하여 성능이 저하되는 한계가 있었습니다. 연구진은 데이터센터의 유연한 환경을 활용해 사용자 수준 샘플링(ULS) 알고리즘을 최적화함으로써, 프라이버시 보호와 모델 성능 사이의 균형을 효과적으로 맞출 수 있음을 증명했습니다. ### 사용자 수준 차분 프라이버시의 의의 * **프라이버시 강화:** 예시 수준 차분 프라이버시(Example-level DP)가 개별 데이터 포인트만 보호하는 반면, 사용자 수준 DP는 특정 사용자가 제공한 모든 데이터의 영향을 제한하여 훨씬 강력한 익명성을 보장합니다. * **실제 데이터 소유 구조 반영:** 오늘날 데이터는 개별 기기나 계정 단위로 묶여 있는 경우가 많으며, 공격자가 사용자의 특정 데이터 한 조각이 아닌 전체 활동 내역을 유추하는 것을 방지하는 데 최적화되어 있습니다. * **LLM 미세 조정의 필수성:** LLM을 특정 도메인에 맞게 최적화할 때 민감한 데이터가 포함되는 경우가 많으므로, 성능을 유지하면서도 프라이버시를 지키는 기술적 장치가 필수적입니다. ### ELS와 ULS 알고리즘 비교 * **예시 수준 샘플링(ELS):** 전체 데이터셋에서 무작위로 예시를 샘플링한 후, 기존 DP-SGD 알고리즘에 더 많은 노이즈를 추가하여 사용자 수준의 프라이버시를 확보하는 방식입니다. * **사용자 수준 샘플링(ULS):** 학습 배치(Batch)를 구성할 때 예시 단위가 아닌 사용자 단위로 무작위 샘플링을 진행하며, 선택된 사용자의 모든 데이터를 학습에 활용합니다. * **연합 학습과의 유사성:** ULS는 분산된 기기에서 학습하는 연합 학습(Federated Learning)과 유사한 구조를 가지지만, 데이터센터 환경에서는 모든 사용자의 데이터를 자유롭게 쿼리할 수 있어 더 유연한 최적화가 가능합니다. ### 기여 제한(Contribution Bound)을 통한 성능 최적화 * **데이터 전처리:** 각 사용자가 학습에 기여할 수 있는 예시의 최대 개수를 제한하는 '기여 제한' 설정이 성능의 핵심 변수로 작용합니다. * **노이즈와 정보의 균형:** 기여 제한을 너무 낮게 잡으면 사용자당 정보량이 부족해지고, 너무 높게 잡으면 프라이버시를 위해 추가해야 할 노이즈가 급격히 늘어나 학습 품질이 떨어집니다. * **데이터센터의 유연성 활용:** 연구진은 데이터센터 학습의 장점을 활용해 사용자와 예시를 모두 쿼리하며 기여 제한 파라미터를 정밀하게 조정함으로써, 연합 학습 기반의 알고리즘보다 더 높은 품질의 LLM 미세 조정이 가능함을 보여주었습니다. 사용자 수준의 프라이버시를 보장하면서 LLM을 미세 조정할 때는 **사용자 수준 샘플링(ULS)** 방식을 우선적으로 고려해야 합니다. 특히 데이터센터 환경에서 학습을 진행한다면, 특정 사용자의 데이터가 지나치게 편중되어 모델에 영향을 주지 않도록 **기여 제한(Contribution Bound)** 파라미터를 사전에 실험적으로 최적화하는 것이 모델의 정확도 손실을 최소화하는 가장 실용적인 전략입니다.

google

Differential privacy on trust graphs (새 탭에서 열림)

구글 리서치가 발표한 '신뢰 그래프 기반 차분 프라이버시(Trust Graph DP, TGDP)'는 사용자 간의 다양한 신뢰 관계를 그래프로 모델링하여 데이터의 효용성과 개인정보 보호 사이의 균형을 맞춘 새로운 프라이버시 프레임워크입니다. 이 모델은 모든 사용자가 서로를 신뢰하지 않는 '로컬 모델'과 중앙 관리자만을 신뢰하는 '중앙형 모델' 사이의 간극을 메우며, 실제 인간관계의 복잡한 신뢰 구조를 수학적으로 반영합니다. 연구진은 지배 집합(Dominating Set) 개념을 활용한 데이터 집계 알고리즘을 통해, 신뢰 구조에 따라 기존 로컬 모델보다 높은 정확도를 달성할 수 있음을 증명했습니다. ### 신뢰 관계의 계층화를 반영한 TGDP 모델 * **신뢰의 가변성 모델링**: 기존의 차분 프라이버시는 신뢰할 수 있는 중앙 관리자가 있거나(중앙형), 아무도 믿지 않는(로컬) 이분법적 상황을 가정하지만, TGDP는 사용자가 가족이나 친구 등 특정 대상은 신뢰하고 낯선 사람은 신뢰하지 않는 현실적인 시나리오를 그래프의 정점(사용자)과 간선(신뢰 관계)으로 표현합니다. * **프라이버시 정의**: 특정 사용자 $u$의 데이터가 변경되더라도, $u$가 신뢰하지 않는 외부인이 관찰하는 메시지의 통계적 분포는 거의 변하지 않아야 한다는 원칙을 세워 프라이버시를 보장합니다. * **모델 간의 가교**: TGDP는 그래프의 형태에 따라 기존 모델들을 포함합니다. 모든 사용자가 중앙 관리자를 신뢰하는 '별 모양(Star)' 그래프는 중앙형 모델이 되고, 아무도 연결되지 않은 그래프는 로컬 모델과 동일해집니다. ### 지배 집합(Dominating Set) 기반 데이터 집계 알고리즘 * **알고리즘 메커니즘**: 그래프 내에서 모든 정점이 자신 혹은 인접한 정점 중 최소 하나를 포함하도록 구성된 '지배 집합 $T$'를 선정합니다. 각 사용자는 자신의 원본 데이터를 신뢰하는 이웃인 지배 집합 구성원에게 전송합니다. * **데이터 취합 및 노이즈 추가**: 데이터를 전달받은 지배 집합의 구성원들은 수집된 값을 합산한 뒤, 차분 프라이버시 조건을 충족하기 위한 적절한 노이즈를 추가하여 외부에 공개합니다. * **정확도 향상**: 이 방식은 각 사용자가 개별적으로 큰 노이즈를 더해야 하는 로컬 모델에 비해, 지배 집합을 통해 데이터를 묶어 처리함으로써 전체적인 오차(Mean-Squared Error)를 크게 줄일 수 있습니다. ### 이론적 한계치와 알고리즘의 효율성 * **오차의 하한선**: 연구진은 데이터 집계 작업에서 발생하는 오차가 그래프의 '지배 수(Domination Number, 지배 집합의 최소 크기)'와 직결됨을 수학적으로 증명했습니다. * **성능 최적화**: 지배 집합의 크기가 작을수록(즉, 소수의 신뢰할 수 있는 노드가 많은 사용자를 커버할수록) 알고리즘은 중앙형 모델에 가까운 높은 정확도를 보여줍니다. * **상호작용의 가치**: 이 모델은 사용자들이 서로 데이터를 공유할 수 있는 신뢰 환경이 조성될 때, 프라이버시를 유지하면서도 얼마나 더 정밀한 통계 분석이 가능한지를 정량적으로 보여줍니다. 이 연구는 위치 정보 공유나 소셜 네트워크 데이터 분석처럼 사용자 간의 신뢰 관계가 이미 형성되어 있는 서비스에서 특히 유용합니다. 데이터 분석가는 사용자의 신뢰 토폴로지를 파악하여 지배 집합 기반의 TGDP 알고리즘을 적용함으로써, 로컬 모델의 낮은 정확도 문제를 극복하고 보다 가치 있는 인사이트를 도출할 수 있을 것으로 기대됩니다.

google

Generating synthetic data with differentially private LLM inference (새 탭에서 열림)

구글 리서치는 별도의 미세 조정(Fine-tuning) 과정 없이 기성 대규모 언어 모델(LLM)의 추론만을 활용하여 차분 프라이버시(Differential Privacy, DP)가 보장된 합성 데이터를 생성하는 새로운 접근 방식을 제안했습니다. 이 방법은 여러 개의 민감한 예시를 병렬 프롬프트로 입력하고 그 응답을 프라이버시를 보호하는 방식으로 집계하여, 기존 방식보다 훨씬 많은 양의 고품질 데이터를 생성할 수 있게 합니다. 결과적으로 복잡한 DP 학습 파이프라인 없이도 민감한 데이터를 안전하게 대체할 수 있는 고성능 합성 데이터셋 구축이 가능해졌습니다. ### 병렬 프롬프팅과 토큰 집계 메커니즘 * 민감한 데이터 하나당 하나의 프롬프트를 할당하여 여러 개의 독립적인 프롬프트를 LLM에 동시에 입력합니다. * 각 프롬프트에서 도출된 다음 토큰 예측(Next-token prediction) 결과들을 집계하고, 특정 개인의 데이터가 결과에 과도한 영향을 미치지 않도록 DP 기법을 적용해 토큰을 최종 선택합니다. * 선택된 토큰을 모든 프롬프트 끝에 다시 추가하고 다음 토큰을 예측하는 과정을 반복함으로써, 개별 데이터의 세부 정보는 가리면서도 데이터셋 전체의 통계적 특성은 유지하는 합성 텍스트를 생성합니다. ### 지수 메커니즘을 통한 프라이버시 예산 최적화 * LLM의 표준 생성 과정인 소프트맥스 샘플링(Softmax sampling)과 DP의 핵심 기법인 지수 메커니즘(Exponential mechanism) 사이의 수학적 연결 고리를 활용합니다. * 다음 토큰을 샘플링할 때 발생하는 고유한 무작위성을 프라이버시 보호를 위한 노이즈로 활용하여, 제한된 프라이버시 예산 안에서도 출력 데이터의 양을 극대화했습니다. * 이를 통해 기존 연구들이 10개 미만의 데이터 포인트 생성에 그쳤던 것과 달리, 수천 개의 고품질 합성 데이터를 성공적으로 생성하며 실무 적용 가능성을 입증했습니다. ### 연산 효율성 개선 및 공개 드래프터 도입 * 기존 방식은 매 토큰 생성 시마다 새로운 데이터 배치를 사용해야 했으나, 이번 연구에서는 동일한 문맥을 유지하며 여러 토큰을 생성할 수 있는 새로운 프라이버시 분석 기법을 도입했습니다. * 이를 통해 KV 캐싱(KV caching)과 같은 표준적인 추론 최적화 기술을 그대로 적용할 수 있어 연산 속도와 효율성을 비약적으로 높였습니다. * 또한, 민감한 데이터가 아닌 공개 데이터에만 기반해 토큰을 제안하는 '공개 드래프터(Public Drafter)' 모델과 희소 벡터 기법(Sparse Vector Technique)을 결합했습니다. 문장 구조나 서식 등 일반적인 정보 생성에는 프라이버시 예산을 소모하지 않도록 설계하여 효율성을 더욱 강화했습니다. 이 방식은 민감한 개인 정보를 다루는 조직이 복잡한 DP 모델 학습 없이도 안전한 합성 데이터를 생성하여 데이터 과학자나 외부 협업 팀에 제공할 수 있는 실무적인 인터페이스 역할을 할 수 있습니다. 특히 데이터 형식이 정형화된 작업에서 높은 성능을 보이므로, 보안이 중요한 환경에서의 데이터 활용도를 높이는 데 적극 권장됩니다.