라인 / gen-ai

9 개의 포스트

line

입사 일주일 만에 일본 출장을? LINE Plus Developer Relations 뉴비의 바쁜 적응기 (새 탭에서 열림)

라인플러스 Developer Relations(DevRel) 팀에 합류한 신규 입사자의 경험을 통해 기술 중심 회사가 엔지니어의 성장을 돕고 개발 문화를 확산시키는 구체적인 과정을 보여줍니다. 저자는 입사 일주일 만에 떠난 일본 출장과 이후 진행한 다양한 사내외 행사를 통해, DevRel의 핵심 역할이 단순한 운영을 넘어 엔지니어와 기술 문화를 유기적으로 연결하는 데 있음을 강조합니다. 결과적으로 탄탄한 온보딩 프로세스와 도전적인 팀 문화가 구성원의 빠른 적응과 창의적인 업무 수행을 가능하게 한다는 결론을 도출합니다. ## 글로벌 기술 컨퍼런스와 해커톤 참여 * **Tech-Verse 및 Hack Day 운영 지원:** 일본에서 열린 글로벌 컨퍼런스 'Tech-Verse'에서 한국어, 영어, 일본어 다국어 동시통역 환경을 점검하고, 사내 해커톤인 'Hack Day'의 현장 이슈 대응 및 운영을 담당하며 글로벌 규모의 행사 체계성을 체감했습니다. * **글로벌 DevRel 협업:** 일본, 태국, 대만, 베트남 등 각국의 DevRel 팀과 주기적으로 미팅하며 국가별 기술 행사 운영 방식과 엔지니어 대상 콘텐츠 구성 사례를 공유하는 유기적인 협업 구조를 확인했습니다. * **현장 기반 테크 브랜딩:** 행사 현장에서 숏폼(Shorts) 영상과 카드 뉴스를 직접 제작 및 배포함으로써, 행사의 폭발적인 에너지를 외부로 전달하는 '테크 브랜딩' 업무의 실무적 접점을 익혔습니다. ## 참여를 이끄는 창의적인 테크 토크 기획 * **파격적인 홍보 전략:** '나의 AI 활용법'을 주제로 한 Tech Talk에서 오프라인 참여율을 높이기 위해 기존의 틀을 깬 유머러스한 포스터와 컵홀더를 제작하는 등 B급 감성을 활용한 마케팅을 시도했습니다. * **실습형 핸즈온 세션 도입:** 엔지니어들의 피드백을 반영해 ChatGPT와 Claude Code를 활용한 핸즈온 세션을 기획했으며, Jira 티켓과 Wiki를 연동한 주간 리포트 자동 생성 등 실무에 즉시 적용 가능한 기술적 사례를 다루었습니다. * **철저한 사전 기술 지원:** 실습 중 발생할 수 있는 변수를 최소화하기 위해 환경 세팅 가이드를 사전 제작하고 문제 발생 시 대응 방안을 마련하는 등 참여자 중심의 세밀한 행사 설계를 진행했습니다. ## 전사 AI 리터러시 향상을 위한 AI Campus Day * **참여 장벽 완화 설계:** '업무에서 벗어나 AI와 놀기'라는 콘셉트로 AI 포토존(Gemini 활용)과 메시지 보드를 운영하여, 약 3,000명의 구성원이 자연스럽게 AI 기술을 경험할 수 있도록 동선을 설계했습니다. * **AI 도구의 실무 적용:** 행사 안내 영상 제작 시 사내에서 지원하는 AI 툴로 아이콘을 만들고 AI 음성을 입히는 등, DevRel 스스로가 기술의 활용 사례가 되어 구성원들의 흥미를 유발했습니다. * **범조직적 협업:** 한 달 반의 준비 기간 동안 여러 부서와 협력하며 'Event & Operation' 역할을 수행했고, 이를 통해 대규모 전사 행사를 성공적으로 이끄는 운영 노하우를 습득했습니다. ## 개방적이고 도전적인 팀 문화 * **심리적 안정감과 실행력:** 신규 입사자의 아이디어를 "재밌겠다"며 지지해 주는 유연한 분위기 덕분에 파격적인 홍보나 새로운 세션 도입과 같은 시도가 실제 성과로 이어질 수 있었습니다. * **체계적인 온보딩 시스템:** 입사 직후 촉박한 출정 일정 속에서도 업무 미션과 온보딩 리스트가 잘 정리되어 있어 업무 맥락을 빠르게 파악하고 전문성을 발휘할 수 있는 환경이 조성되었습니다. 성공적인 DevRel 활동을 위해서는 기술적 이해도만큼이나 엔지니어의 니즈를 파악하는 공감 능력, 그리고 아이디어를 즉각 실행에 옮길 수 있는 개방적인 팀 문화가 필수적입니다. 조직 내 개발 문화를 활성화하고 싶다면, 구성원들이 기술을 즐겁게 경험할 수 있도록 참여 문턱을 낮추는 작은 실험부터 시작해 볼 것을 추천합니다.

line

사내 AI 리터러시를 향상하기 위한 AI Campus Day를 개최했습니다 (새 탭에서 열림)

LY Corporation은 전 직군의 AI 리터러시를 높이고 실무 적용을 독려하기 위해 사내 실습 행사 'AI Campus Day'를 개최했습니다. 외부 강사 대신 사내 전문가인 'AI 멘토'를 활용하고 실습 중심의 핸즈온 세션을 구성함으로써, 보안 가이드라인과 사내 업무 환경에 최적화된 실질적인 AI 활용 노하우를 성공적으로 전파했습니다. 이번 행사는 단순한 교육을 넘어 축제 형태의 운영 방식을 도입하여 임직원들이 자발적으로 AI 기술을 탐색하고 업무 생산성을 높이는 계기를 마련했습니다. **실무 역량 강화를 위한 수준별 핸즈온 세션** * **직군별 맞춤 트랙 운영:** 'Common', 'Creative', 'Engineering'의 3개 트랙으로 나누어, 기초 프롬프팅부터 MCP(Model Context Protocol) 서버 구축과 같은 심화 주제까지 총 10개의 세션을 제공했습니다. * **단계별 난이도 설계:** 참가자의 AI 활용 수준에 맞춰 3단계 레벨을 설정하여, 비개발 직군부터 엔지니어까지 누구나 자신의 수준에 맞는 학습이 가능하도록 했습니다. * **철저한 실습 지원 체계:** 흐름을 놓치지 않도록 상세한 '세션 가이드'를 제작 배포하고, 세션마다 2~3명의 조교(총 26명)를 배치하여 현장에서 발생하는 기술적 문제를 즉각 해결했습니다. * **Slack 기반의 소통:** 각 세션별 채널을 통해 실습 결과물을 실시간으로 공유하고 질의응답을 진행하여 참여도를 높였습니다. **사내 콘텍스트를 반영한 AI 멘토링** * **내부 전문가 활용:** 외부 강사 대신 사내에서 이미 AI를 적극적으로 활용 중인 동료 10명을 멘토로 선발하여 현장감 있는 지식을 공유했습니다. * **최적화된 도구 활용:** ChatGPT Enterprise, Gemini, Claude Code 등 사내에서 허용된 도구와 보안 수칙을 100% 반영하여, 배운 내용을 즉시 업무에 적용할 수 있는 환경을 구축했습니다. * **체계적인 콘텐츠 검토:** 운영진은 멘토 가이드를 제공하고, '주제 검토 - 최종 자료 리뷰 - 리허설'로 이어지는 다단계 프로세스를 통해 교육 콘텐츠의 완성도를 확보했습니다. **자발적 참여를 유도하는 축제형 운영** * **캠퍼스 테마 도입:** 수강 신청, 등교, 스탬프 랠리 등 대학교 캠퍼스 컨셉을 활용하여 학습에 대한 심리적 장벽을 낮추고 즐거운 분위기를 조성했습니다. * **몰입형 이벤트 부스:** Gemini를 활용한 AI 포토존, 자체 개발 AI 업무 지원 솔루션 체험, AI 에이전트 콘테스트 홍보 등 다채로운 부스를 운영하여 AI의 효용성을 직접 경험하게 했습니다. * **리더십의 전폭적 지지:** 경영진의 축전 영상을 통해 '업무 대신 AI와 함께 노는 하루'라는 메시지를 전달함으로써, 임직원들이 심리적 부담 없이 행사에 몰입할 수 있는 환경을 만들었습니다. 성공적인 사내 AI 전환(AX)을 위해서는 단순한 도구 보급을 넘어, 사내 보안 가이드와 업무 맥락을 정확히 이해하는 내부 전문가 중심의 실습 교육이 필수적입니다. AI Campus Day와 같이 학습을 '숙제'가 아닌 '축제'로 인식하게 만드는 운영 전략은 구성원들의 자발적인 기술 수용도를 높이는 데 매우 효과적인 접근 방식이 될 것입니다.

line

한 달짜리 과제, 바이브 코딩으로 5일 만에!(ChatGPT·Cursor) (새 탭에서 열림)

기존의 전통적인 개발 방식은 상세한 요구 사항 정의와 설계 단계에 많은 비용이 소모되어 급변하는 시장 트렌드에 대응하기 어렵습니다. 이 글은 생성형 AI를 활용해 '작동하는 데모'를 빠르게 만들고 이를 수정해 나가는 '바이브 코딩(Vibe Coding)' 전략을 통해, 한 달이 걸릴 과제를 단 5일 만에 해결한 과정을 담고 있습니다. 완벽한 정답보다는 충분히 괜찮은 해답을 빠르게 도출해 검증 루프를 돌리는 것이 핵심입니다. ### 요구 사항과 도메인의 간결한 정의 - 복잡한 메뉴 등록 시스템을 단순화하기 위해, 초기 요구 사항은 메모장에 한 줄 요약과 최우선순위 1~2가지만 정리하여 시작합니다. - 데이터 구조는 화면 구성의 기반이 되므로 가능한 사실에 가깝게 정의하되, 세부적인 내용은 AI의 창의적인 제안을 수용할 수 있도록 여백을 둡니다. - 처음부터 완벽한 명세서를 작성하려 하기보다, AI가 맥락을 파악할 수 있는 핵심 도메인 지식을 전달하는 데 집중합니다. ### 5가지 솔루션 후보 선정 및 구체화 - ChatGPT를 활용해 '스텝퍼형 마법사', '라이브 미리보기', '템플릿 복제', '채팅 입력', 'OCR 사진 촬영' 등 서로 다른 접근 방식의 솔루션 5가지를 도출합니다. - 각 솔루션의 장단점을 분석하여 실무 적용 가능성을 판단하고, 프롬프트를 미세 조정하며 원하는 수준의 답변이 나올 때까지 반복 요청합니다. - 이 과정에서 AI는 맥락을 축적하며 결과물의 품질을 높이며, 사용자는 여러 대안 중 최적의 사용자 경험(UX)을 선택할 수 있는 시야를 확보합니다. ### AI 기반의 와이어프레임 및 상세 설계 - 선정된 각 솔루션별로 필요한 화면 수, UI 요소, 공통 패턴(진행률 표시, 유효성 검사 등)을 AI가 상세히 설계하도록 유도합니다. - 예를 들어 '스텝퍼형'의 경우 8단계의 상세 화면 구성을 정의하고, 각 단계에서 입력받을 필드와 도움말 문구까지 구체화합니다. - 설계 과정에서 누락된 기능이나 우선순위 변경이 발견되면 프롬프트를 수정해 즉시 재설계하며, 물리적 설계 문서 작성의 부담을 최소화합니다. ### Cursor와 Flutter를 활용한 고속 구현 - AI 통합 개발 환경인 Cursor를 사용해 Flutter 기반의 모바일 앱 코드를 생성하며, 단일 코드베이스의 이점을 살려 실험 속도를 극대화합니다. - 먼저 5가지 솔루션의 진입점이 포함된 공통 뼈대(Main Screen)를 작성한 뒤, 각 솔루션을 개별 파일로 나누어 점진적으로 구현합니다. - 처음부터 상태 관리 라이브러리(Riverpod)나 데이터베이스(SQLite) 같은 기술 스택을 고민하지 않고, 기능 위주의 화면 데모를 먼저 만든 후 필요에 따라 스택을 추가하는 역순 방식을 취합니다. 이러한 방식은 '완성물이 최고의 디버거'라는 철학을 바탕으로 합니다. 문서 상의 논의에 시간을 쏟기보다 작동하는 앱을 빠르게 만들어 직접 만져보며 수정하는 것이 결과적으로 더 높은 품질의 제품을 더 빨리 만드는 길입니다. AI는 반복적인 재작업 요청에도 지치지 않으므로, 개발자는 이를 활용해 끊임없이 가설을 검증하고 정답에 가까워지는 '반복의 힘'을 믿어야 합니다.

line

PD1 AI 해커톤, 그 뜨거웠던 열기 속으로! (새 탭에서 열림)

PD1 해커톤 2025는 LINE 앱의 핵심 개발 조직인 PD1이 주관하여 AI 기술을 서비스에 접목할 혁신적인 아이디어를 발굴하고 기술적 가능성을 실험한 자리였습니다. 약 60명의 개발자가 참여해 48시간 동안 대화 경험 개선부터 업무 자동화까지 다양한 영역에서 AI 활용 방안을 제시하며 LINE 앱의 미래를 탐색했습니다. 이번 행사는 단순한 이벤트의 차원을 넘어 실제 서비스에 즉각 적용 가능한 수준 높은 기술적 성취를 확인했다는 점에서 큰 의미를 가집니다. **PD1 해커톤의 지향점과 조직적 배경** * LINE 앱의 iOS, Android 메신저 기능과 내부 플랫폼 개선을 담당하는 PD1 조직이 주도하여 실질적인 사용자 경험 변화를 목표로 삼았습니다. * AI 기술을 메시징, 콘텐츠, 업무 자동화에 필수적으로 도입해야 하는 산업 흐름에 발맞추어 기획되었습니다. * 혁신적인 AI 기술 확보, 일상적인 문제 해결, 그리고 내부 개발 생산성 향상이라는 세 가지 핵심 과제를 탐구했습니다. **AI 기반의 커뮤니케이션 및 콘텐츠 혁신** * **NextVoIP 팀 (VoIP x AI):** 1:1 및 그룹 통화의 음성 데이터를 실시간으로 텍스트로 변환(STT)한 뒤, AI 모델을 통해 보이스피싱 등 사고 예방, 대화 보조, 관련 콘텐츠 제안 기능을 구현했습니다. * **MELODY LINE 팀 (Music from Conversation):** 대화의 맥락과 감정을 AI로 분석하여 그 분위기에 맞는 멜로디를 자동으로 생성하는 '음악 기반 대화'라는 독특한 사용자 경험을 제시하여 최우수상을 수상했습니다. * 서비스 내 메시지 데이터를 AI로 분석해 즉석에서 해커톤 주제가를 작곡하는 등 기술과 예술을 융합한 창의적인 시도들이 돋보였습니다. **실무 직결형 AI 테스트 자동화 솔루션** * **IPD 팀 (AI 테스트 자동화 - 대상 수상):** 반복적인 QA 업무를 효율화하기 위해 AI가 테스트 케이스를 생성·관리하고, 자동 실행 및 실패 원인 분석까지 수행하는 시스템을 시연했습니다. * 현업에 즉시 투입 가능한 수준의 실용성과 완성도를 보여주었으며, 개발 이후 단계인 테스트 과정의 비용 절감 및 품질 향상 가능성을 입증했습니다. * 단순한 아이디어 제시에 그치지 않고 실제 프로젝트에 적용 가능한 구체적인 기술적 프레임워크를 선보여 참가자들의 높은 평가를 받았습니다. 이번 해커톤에서 도출된 QA 자동화나 VoIP 보안 강화와 같은 아이디어들은 실제 서비스의 안정성과 편의성을 높이는 데 중요한 이정표가 될 것입니다. 개발자들이 짧은 시간 내에 몰입하여 AI의 실용적 가치를 증명해낸 만큼, 여기서 얻은 기술적 자산들을 실제 LINE 앱 고도화 과정에 적극적으로 반영하고 지속적인 실험 환경을 구축하는 것을 추천합니다.

line

자네, 해커가 되지 않겠나? Hack Day 2025에 다녀왔습니다! (새 탭에서 열림)

LY Corporation의 'Hack Day 2025'는 19년째 이어져 온 전통 있는 사내 해커톤으로, 직무와 국적에 상관없이 구성원들이 자유롭게 아이디어를 기술로 구현하는 혁신적인 개발 문화를 상징합니다. 참가자들은 24시간 동안 몰입하여 프로토타입을 제작하며, 'Perfect the Details' 정신을 바탕으로 기술적 검증과 협업의 가치를 실현합니다. 이번 행사는 단순한 개발을 넘어 글로벌 동료들과의 네트워크를 강화하고 창의적인 시도를 장려하는 LY Corporation만의 독보적인 기술 축제로 자리매김했습니다. **자유로운 협업과 글로벌 팀 빌딩** * 과거 야후 재팬 시절부터 시작되어 19회차를 맞이한 Hack Day는 기획자, 디자이너, HR 등 사내 구성원 누구나 참여할 수 있는 열린 행사입니다. * 온/오프라인 밋업과 Zoom, Miro 등의 툴을 활용해 한국, 일본, 대만, 베트남 등 다양한 국가의 멤버들이 'Global Mixed Team'을 구성하여 협업합니다. * 하이브리드 워크 환경에 맞춰 이동 시간 및 업무 집중 시간을 보장하는 'Travel Day' 제도를 통해 원격 근무자들이 오프라인에서 밀도 있게 협업할 수 있는 환경을 제공합니다. **몰입을 돕는 환경과 해커톤의 문화** * 행사 기간 동안 오피스의 한 층을 통째로 사용하며, 팀별 독립 공간과 화이트보드, 모니터 등 개발에 필요한 인프라를 전폭적으로 지원합니다. * 1일 차 오전 9시, 전 참가자가 모여 "Hack Time!"을 외치는 개회 선언을 통해 행사의 본격적인 시작을 알리는 전통이 있습니다. * 에너지 소모가 큰 해커톤 특성을 고려하여 시간대별로 도넛, 컵라면 등 다양한 간식과 전 세계 법인에서 가져온 이색 먹거리를 무제한 제공하여 개발에만 집중할 수 있게 돕습니다. **AI 모델을 활용한 기술적 실천과 유연한 피보팅** * 실제 프로젝트 사례로 Slack 커뮤니케이션 기록과 AI 모델을 결합해 개개인의 협업 성향을 분석하는 '전투력 측정' 프로그램을 개발했습니다. * 성격 심리학 모델인 'Big 5 Personality'를 도입하여 데이터의 신뢰성을 확보하고, 이를 게임 캐릭터 능력치처럼 시각화하여 재미 요소를 더했습니다. * 개발 마지막 단계에서 포토 프린터 하드웨어 장애라는 변수가 발생하자, 실물 카드 출력 대신 파일 다운로드 방식으로 기획을 신속하게 변경하며 해커톤 특유의 유연한 문제 해결 능력을 발휘했습니다. **성과 공유를 위한 90초 발표와 부스 운영** * 3일 차에는 각 팀이 결과물을 공유하며, 90초라는 엄격한 시간 제한 속에서 핵심 기능과 데모를 선보이는 '라이브 피칭'을 진행합니다. * 발표 후에는 별도의 부스 운영 시간을 통해 심사위원과 다른 참가자들이 직접 서비스를 체험해 보고 기술적인 디테일에 대해 심도 있는 질의응답을 나눕니다. * 창의성, 기술적 완성도, 발표 전달력을 종합적으로 평가하여 시상하며, 이를 통해 사내 기술 트렌드를 공유하고 성취감을 고취합니다. Hack Day와 같은 사내 해커톤은 일상적인 업무에서 벗어나 최신 기술(AI 등)을 실험하고 동료와의 유대감을 쌓을 수 있는 최고의 기회입니다. 기술적 성장에 목마른 조직이라면, 결과물의 완벽함보다는 24시간 동안의 몰입 경험과 그 과정에서 발생하는 유쾌한 시행착오를 장려하는 문화를 구축해 보길 추천합니다.

line

LY의 테크 컨퍼런스, 'Tech-Verse 2025' 후기 (새 탭에서 열림)

LY Corporation(이하 LY)은 기술 컨퍼런스 'Tech-Verse 2025'를 통해 합병 이후의 플랫폼 통합 전략과 AI 기업으로의 전환 비전을 제시했습니다. LY는 자체 프라이빗 클라우드 구축을 통해 압도적인 비용 절감과 보안 강화를 실현하고, 모든 서비스에 AI 에이전트를 도입하여 사용자 경험을 혁신할 계획입니다. 특히 생성형 AI를 활용한 개발 프로세스의 전면적인 진화로 엔지니어가 서비스 본질에 집중할 수 있는 환경을 구축하는 것이 핵심입니다. **CatalystOne: 고효율 통합 플랫폼 구축** * **자체 클라우드 기반의 비용 최적화**: 퍼블릭 클라우드 대비 약 4배의 비용 절감 효과를 거두고 있으며, 50만 대의 서버와 3Tbps에 달하는 대규모 트래픽을 효율적으로 관리하고 있습니다. * **플랫폼 통합(CatalystOne)**: 합병 후 중복된 인프라를 'CatalystOne'이라는 이름 아래 통합하여 기술, 엔지니어, 시설 등 핵심 자원의 운영 집중도를 높였습니다. * **보안 및 혁신 가속화**: 통합된 플랫폼을 통해 거버넌스를 강화하고, 폭발적인 데이터 성장과 생성형 AI 수요에 기민하게 대응할 수 있는 차세대 프라이빗 클라우드 'Flava'를 구축했습니다. **전 서비스의 AI 에이전트화와 개발 혁신** * **퍼스널 에이전트 구현**: 현재 44개 서비스에 생성형 AI를 도입했으며, 수천만 개의 에이전트를 연계하여 개별 사용자의 니즈를 정교하게 지원하는 것을 목표로 합니다. * **AI 기반 개발 솔루션 도입**: 2025년 7월부터 모든 엔지니어에게 AI 개발 솔루션을 전면 도입하며, RAG(검색 증강 생성) 기술로 사내 지식을 활용해 코드 품질을 높입니다. * **생산성 지표의 획기적 개선**: PoC 결과 'Code Assist'는 96%의 정답률을 기록했고, 'Auto Test' 도입으로 테스트 시간을 97% 단축하는 등 압도적인 개발 효율성 향상을 확인했습니다. **실용적인 결론** LY의 전략은 대규모 인프라를 운영하는 기업이 단순히 AI를 도입하는 것에 그치지 않고, 인프라 통합을 통한 비용 효율화와 AI를 활용한 개발 문화 혁신이 병행되어야 함을 보여줍니다. 특히 엔지니어링 환경에 AI를 적극적으로 이식하여 확보한 리소스를 사용자 가치 증대에 재투자하는 선순환 구조는 기술 기업들이 참고할 만한 모델입니다.

line

테크 컨퍼런스 Tech-Verse 2025를 개최합니다 (새 탭에서 열림)

LY Corporation은 오는 6월 30일부터 7월 1일까지 양일간 글로벌 테크 컨퍼런스인 'Tech-Verse 2025'를 개최합니다. 이번 행사는 AI와 보안을 메인 테마로 하여 전 세계 그룹사 엔지니어들이 경험한 127개의 기술 세션을 온라인으로 공유할 예정입니다. 누구나 무료 사전 등록을 통해 참여할 수 있으며, 한국어, 영어, 일본어 실시간 통역이 제공되어 글로벌 기술 트렌드를 깊이 있게 파악할 수 있는 기회를 제공합니다. **Tech-Verse 2025 행사 개요 및 참여 방법** * **일정 및 방식**: 2025년 6월 30일(월)부터 7월 1일(화)까지 매일 오전 10시에서 오후 6시 사이에 진행되며, 전 세션 온라인 스트리밍으로 생중계됩니다. * **참여 대상**: 공식 사이트에서 사전 등록만 하면 누구나 무료로 시청할 수 있어 접근성이 높습니다. * **글로벌 협업**: 한국의 LINE Plus를 비롯해 일본, 대만, 베트남 등 LY Corporation 그룹사 전체의 엔지니어, 디자이너, 프로덕트 매니저가 참여하여 폭넓은 기술 생태계를 다룹니다. **12개 분야의 방대한 기술 세션 구성** * **일자별 트랙 구성**: 1일 차에는 AI, 보안, 서버사이드, 프라이빗 클라우드 등 인프라 중심의 세션이 배치되며, 2일 차에는 AI 유즈 케이스, 프론트엔드, 모바일 앱, 디자인 및 제품 관리 등 사용자 접점 기술을 중점적으로 다룹니다. * **다국어 지원**: 총 127개의 세션에 대해 3개 국어(한/영/일) 실시간 통역을 지원하여 언어 장벽 없이 기술적 디테일을 학습할 수 있습니다. * **핵심 테마**: 최근 IT 업계의 화두인 생성형 AI의 실무 적용과 고도화된 보안 전략이 전체 컨퍼런스의 중심축을 이룹니다. **분야별 주목해야 할 주요 기술 사례** * **AI 및 데이터 파이프라인**: 단순한 코드 작성을 넘어 전문적인 AI 코딩 프로세스로의 진화와 생성형 AI를 활용한 데이터 파이프라인 구축 및 분석 자동화 사례가 소개됩니다. * **인프라 및 서버사이드**: 'Central Dogma Control Plane'을 활용해 수천 개의 마이크로서비스를 연결하는 대규모 인프라 관리 기법과 LINE Call의 영상 품질 개선을 위한 서버 기술이 공유됩니다. * **앱 개발 및 사용자 경험**: 배달 서비스 '데마에칸(Demae-can)'의 개발 환경을 React Native에서 Flutter로 전면 교체한 과감한 이행 전략과 데이터 기반의 LINE Talk 사용자 인사이트 도출 과정이 포함되어 있습니다. **참여 권장 및 실용 가이드** 최신 기술 트렌드와 대규모 서비스 운영 노하우를 얻고 싶은 개발자라면 Tech-Verse 2025 공식 사이트를 통해 관심 있는 세션을 미리 타임테이블에 등록해 두는 것이 좋습니다. 특히 현업에서 AI 도입을 고민하거나 대규모 트래픽 처리를 위한 인프라 구조를 연구하는 엔지니어들에게 실질적인 기술적 영감을 줄 것으로 기대됩니다.

line

AI와 글쟁이의 동행: 코드 주면 API 레퍼런스 써드려요 (새 탭에서 열림)

기술 문서 부족 문제를 해결하기 위해 엔지니어링 관점에서 접근한 이 글은, 생성형 AI를 활용해 사내 기술 컨텍스트와 스타일 가이드가 반영된 API 레퍼런스를 자동 생성하는 프로젝트 과정을 소개합니다. 일반적인 코딩 어시스턴트의 한계를 극복하기 위해 프롬프트 워크플로를 최적화하고, 특정 IDE에 종속되지 않도록 MCP(Model Context Protocol)를 도입하여 범용성을 확보했습니다. 최종적으로 AI가 생성한 결과물은 높은 품질을 보였으나, 기술 문서의 특성상 정확성을 담보하기 위한 인간의 검토 단계가 필수적임을 강조하며 결론을 맺습니다. ## 기존 AI 도구의 한계와 도큐먼트 엔지니어링의 목표 * 기술 문서는 항상 부족하며, 개발자 교육만으로는 시간과 관심의 부재라는 근본적인 원인을 해결하기 어렵다는 판단하에 자동화 프로세스를 구축했습니다. * GitHub Copilot과 같은 기존 도구는 코드 파악 능력은 뛰어나지만, 사내 전용 기술 용어나 특수한 스타일 가이드, 프로젝트별 컨텍스트를 반영하지 못하는 단점이 있습니다. * '사내 정보를 참고해 스타일 가이드에 맞는 API 주석을 작성하고, 이를 한곳에서 배포하기'를 목표로 테크니컬 라이터의 노하우를 자동화 공정에 이식했습니다. ## 프롬프트 최적화와 단계별 워크플로 구성 * 초기에는 방대한 지시 사항이 담긴 긴 프롬프트를 사용했으나, LLM이 복잡한 지시를 놓치는 문제가 발생하여 실행 단계를 세분화했습니다. * 처리 속도와 정확도 사이의 타협점을 찾기 위해 '프로그래밍 언어 인식', 'API 파악 및 예제 작성', '설명 및 파라미터/응답 값 작성'의 3단계 워크플로로 압축했습니다. * LINE의 고유 식별자인 'MID'를 단순한 약어(Member ID 등)로 오해하지 않고 사내 정의에 맞게 설명하도록 컨텍스트를 주입하여 일반 AI 도구와 차별화된 품질을 구현했습니다. ## 범용성 확보를 위한 MCP(Model Context Protocol) 도입 * 초기 프로토타입은 VS Code 익스텐션으로 제작했으나, IntelliJ 등 다양한 IDE를 사용하는 개발자들의 요구를 수용하기 위해 MCP 기반으로 전환했습니다. * MCP 서버는 클라이언트와의 통신에만 집중하므로, UI 구현에 드는 비용을 줄이고 언어 판별이나 코드 블록 선택 같은 부가 기능을 MCP 호스트(IDE 등)에 위임할 수 있습니다. * 사용자가 AI와 대화하며 파라미터를 입력하는 방식은 현대적인 AI 사용 경험에 부합하며, 특정 도구에 종속되지 않는 범용적인 문서화 솔루션을 제공합니다. ## AI 문서화의 성과와 실질적인 한계 * 자체 평가 결과, 생성된 주석의 88%가 기준을 만족했으며 78%의 사례에서 GitHub Copilot보다 우수한 품질의 설명을 생성하는 성과를 거두었습니다. * 그러나 AI는 확률 기반으로 작동하므로 100%의 정확성을 보장하지 못하며, 단 한 줄의 오류가 문서 전체의 신뢰도를 떨어뜨리는 API 레퍼런스의 특성상 위험 요소가 존재합니다. * 따라서 AI를 '완벽하지 않은 동반자'로 정의하고, AI가 초안을 대량으로 빠르게 생산하되 마지막 단계에서는 반드시 담당 개발자가 내용을 검토하는 '사람 중심의 검증' 프로세스를 권장합니다.

line

AI로 생성한 이미지는 어떻게 평가할까요? (인페인팅 적용편) (새 탭에서 열림)

배경 인물 제거(BPR) 기능을 구현하기 위해서는 사진의 빈 공간을 자연스럽게 채워주는 '인페인팅(Inpainting)' 기술의 선정이 핵심적이지만, 단순히 논문의 수치만으로는 실제 서비스 성능을 가늠하기 어렵습니다. 이를 해결하기 위해 LY Corporation 개발팀은 다양한 생성형 AI 모델과 평가 지표를 비교 분석하여, 실제 사람의 시각적 평가와 가장 유사한 결과를 도출하는 최적의 평가 체계를 구축하고자 했습니다. 결과적으로 고해상도와 큰 삭제 영역 등 실무적인 제약 조건을 반영한 자체 테스트를 통해 서비스에 가장 적합한 모델 선정 기준을 마련했습니다. **배경 인물 제거(BPR)의 3단계 프로세스** * **인스턴스 분할(Instance Segmentation):** 사진 속 각 픽셀이 어떤 객체(사람, 건물, 나무 등)에 속하는지 식별하여 개별적으로 인식합니다. * **주요 객체 탐지(Salient Object Detection):** 이미지에서 시선이 집중되는 메인 피사체와 제거 대상인 배경 인물을 픽셀 단위로 구분합니다. * **인페인팅(Inpainting) 수행:** 배경 인물이 제거된 빈 영역을 주변 환경과 조화롭게 재구성하여 채워 넣는 최종 단계로, 전체 결과물 품질에 가장 큰 영향을 미칩니다. **인페인팅 모델의 기술적 접근 방식** * **디퓨전(Diffusion) 계열:** 랜덤 노이즈에서 점진적으로 이미지를 복원하며, 복잡한 세부 사항을 자연스럽게 살리는 데 유리하지만 생성 속도가 상대적으로 느립니다. * **GAN(Generative Adversarial Network) 계열:** 생성자와 판별자가 경쟁하며 학습하는 구조로, 디퓨전 모델에 비해 이미지 생성 속도가 빠르다는 장점이 있습니다. * **성능의 가변성:** 저해상도나 좁은 영역에서는 대부분의 모델이 준수한 성능을 보이나, 고해상도 이미지에서 큰 영역을 삭제할 경우 모델별로 결과물의 품질 차이가 극명하게 발생합니다. **신뢰할 수 있는 인페인팅 모델 평가의 어려움** * **벤치마크의 한계:** 논문에서 제시하는 256x256 등 고정된 저해상도 지표는 실제 서비스의 고해상도 환경을 대변하지 못합니다. * **정답의 부재:** 이미지 생성은 하나의 정답이 존재하지 않으며, 다양한 결과물이 모두 정답이 될 수 있어 수치화된 평가가 복잡합니다. * **상황별 성능 변화:** 특정 테스트셋에서 우수한 모델이 다른 인페인팅 영역이나 데이터셋에서는 실망스러운 결과를 보여주는 경우가 빈번합니다. **실험을 통한 최적의 평가 방법 탐색** * **데이터셋 구성:** 품질 편차가 큰 10개의 이미지를 모은 'BPR 평가 데이터셋'과 표준인 'Places365'를 활용해 11개의 최신 인페인팅 모델(LaMa, HINT, FLUX.1 등)을 테스트했습니다. * **사용된 지표:** 단일 이미지 품질을 측정하는 Aesthetics score, CLIP-IQA, Q-Align과 모델 간 선호도를 비교하는 PickScore, ImageReward 등을 적용했습니다. * **최종 목표:** 사람이 직접 눈으로 평가하는 비용과 시간을 줄이면서도, 인간의 주관적 평가 결과와 가장 높은 상관관계를 갖는 자동화된 평가 지표를 찾는 데 집중했습니다. **성공적인 AI 기능을 위한 실용적 제언** 논문상의 지표(Metric)에만 의존하기보다는 실제 서비스가 적용될 환경(해상도, 객체 크기 등)과 유사한 자체 데이터셋을 구축하여 테스트해야 합니다. 특히 배경 인물 제거와 같이 시각적 자연스러움이 중요한 작업에서는 정량적 수치 너머의 '심미적 점수'를 반영할 수 있는 최신 생성형 AI 평가 방법론을 병행하여 모델을 검증하는 것이 필수적입니다.