라인 / llm

7 개의 포스트

line

엔터프라이즈 LLM 서비스 구축기 1: 컨텍스트 엔지니어링 (새 탭에서 열림)

대규모 엔터프라이즈 환경에서 LLM 서비스를 구축할 때는 정교한 지시어(프롬프트 엔지니어링)보다 AI에게 필요한 정보만 선별해 제공하는 '컨텍스트 엔지니어링'이 더욱 중요합니다. LY Corporation은 260개가 넘는 API와 방대한 문서를 다루는 클라우드 AI 어시스턴트를 개발하며, 컨텍스트의 양이 늘어날수록 모델의 추론 성능이 하락하고 환각 현상이 발생하는 문제를 확인했습니다. 이를 해결하기 위해 사용자의 의도에 맞춰 필요한 도구와 가이드라인만 실시간으로 주입하는 '점진적 공개' 전략과 시스템 프롬프트의 충돌을 방지하는 '모의 도구 메시지' 기법을 도입하여 성능과 정확도를 동시에 확보했습니다. ### 컨텍스트 과부하와 성능의 상관관계 * **정보량과 성능의 반비례**: 최신 LLM은 수십만 토큰의 컨텍스트 윈도우를 지원하지만, 입력 길이가 길어질수록 핵심 정보를 찾는 능력이 최대 85%까지 급격히 하락합니다. * **노이즈로 인한 판단력 저하**: 질문과 유사해 보이지만 실제로는 관계없는 정보(노이즈)가 섞이면 모델이 당당하게 가짜 정보를 생성하는 환각 현상이 빈번해집니다. * **토큰 소모 효율성**: LLM은 이전 대화를 기억하지 못하는 스테이트리스(stateless) 구조이므로, 대화가 길어지고 API의 JSON 응답이 누적되면 64K 토큰 정도의 용량은 순식간에 소모되어 비용과 성능에 악영향을 줍니다. ### 도구 선별을 통한 컨텍스트 절약 * **선별적 로드**: 260개의 모든 API 도구를 한 번에 컨텍스트에 올리지 않고, 사용자의 질문에서 제품군(예: Redis, Kubernetes)을 먼저 식별합니다. * **도구 최적화**: 사용자가 특정 제품에 대해 물을 때만 관련된 소수의 도구(API)만 선별하여 제공함으로써 모델의 인지 부하를 획기적으로 줄입니다. ### 응답 가이드라인과 점진적 공개 전략 * **상황별 지침 주입**: "리소스 변경 시 UI 안내 우선"과 같이 특정 조건에서만 필요한 운영 지침을 '응답 가이드라인'으로 정의하고, 질문의 성격에 따라 필요한 시점에만 선택적으로 로드합니다. * **시스템 프롬프트와 가이드라인의 분리**: 모든 상황에 적용되는 '대원칙'은 시스템 프롬프트에, 특정 상황의 '행동 절차'는 가이드라인에 배치하여 관리 효율을 높입니다. ### 모의 도구 메시지(ToolMessage)를 활용한 환각 방지 * **프롬프트 충돌 문제**: 새로운 가이드라인을 단순히 시스템 프롬프트 뒤에 추가할 경우, 모델이 기존의 대원칙(예: "반드시 검색 결과로만 답변하라")을 무시하고 가이드라인에만 매몰되어 환각을 일으키는 현상이 발생했습니다. * **도구 메시지 전략**: 가이드라인을 시스템 프롬프트에 넣는 대신, 마치 검색 도구를 실행해서 얻은 결과값인 것처럼 '도구 메시지(ToolMessage)' 형식으로 주입합니다. * **전략의 효과**: 이 방식을 통해 LLM은 시스템 프롬프트의 대원칙을 준수하면서도, 주입된 가이드라인을 도구로부터 얻은 최신 정보로 인식하여 훨씬 정확하고 일관된 답변을 생성하게 됩니다. 엔터프라이즈 LLM 서비스의 핵심은 모델의 지능을 믿고 모든 데이터를 던져주는 것이 아니라, 모델이 가장 똑똑하게 판단할 수 있도록 최적의 정보만 정교하게 큐레이션하여 전달하는 설계 능력에 있습니다. 특히 복잡한 비즈니스 로직이나 사내 고유 지식을 반영해야 할 때는 시스템 프롬프트를 비대하게 만드는 대신, 도구 메시지나 동적 컨텍스트 주입 기술을 활용해 모델의 판단 체계를 보호하는 것이 실질적인 해결책이 됩니다.

line

안전은 기본, 비용 절감은 덤: AI 서비스에 별도 가드레일이 필요한 이유 (새 탭에서 열림)

AI 가드레일은 모델의 오동작을 막는 필수 안전장치이지만, 단순히 시스템 프롬프트에 규칙을 심는 방식은 모델 본연의 성능 저하와 예기치 못한 부작용을 초래할 수 있습니다. 시스템 프롬프트는 규칙의 위치나 미세한 수정에 따른 출력 변동성에 매우 민감하기 때문에, 모델 외부에서 입출력을 검증하는 별도의 가드레일 체계를 구축하는 것이 보안과 서비스 안정성 측면에서 더욱 효율적입니다. ### 시스템 프롬프트 기반 가드레일의 과도한 거절 문제 * 시스템 프롬프트에 강력한 안전 규칙을 부여하면, 모델이 전체적으로 보수적인 태도를 취하게 되어 무해한 질문까지 거절하는 위양성(False Positive) 확률이 높아집니다. * 연구 결과에 따르면 안전 프롬프트 추가 시 전체 쿼리의 임베딩이 '거절' 방향으로 이동하며, "Python 프로세스를 죽이는(kill) 방법"과 같은 기술적인 질문조차 위험한 요청으로 오인하여 거절하는 패턴이 관찰됩니다. * 이는 보안 강도와 사용자 경험(정상적인 답변 수신) 사이의 트레이드오프를 심화시켜 모델의 유용성을 떨어뜨리는 원인이 됩니다. ### 프롬프트 위치 및 순서에 따른 위치 편향(Position Bias) * LLM은 긴 컨텍스트 안에서 처음과 끝부분의 정보는 잘 인식하지만, 중간에 위치한 정보는 간과하는 'Lost in the Middle' 현상을 보입니다. * 여러 제약 조건이 섞여 있는 경우, 가드레일 규칙이 시스템 프롬프트의 어느 지점에 위치하느냐에 따라 모델이 해당 규칙을 지키는 가중치가 달라집니다. * 실험 결과에 따르면 난이도가 높은 제약을 앞쪽에 배치할 때 성능이 가장 좋으며, 가드레일 규칙이 중간이나 뒤로 밀려날 경우 보안 성능이 일정하게 유지되지 않는 불안정성을 보입니다. ### 미세한 수정이 유발하는 성능의 나비효과 * 시스템 프롬프트 내의 아주 사소한 변화(공백 추가, "감사합니다" 문구 삽입 등)만으로도 모델의 결정 경계가 이동하여 전체 예측 값의 10% 이상이 바뀔 수 있습니다. * 특히 출력 형식을 지정(JSON/XML)하거나 특정 탈옥 방지 문구를 섞는 행위가 모델의 내부 추론 경로를 완전히 바꾸어, 일부 작업에서 성능이 급락하는 '재앙적인 수준의 붕괴'가 발생하기도 합니다. * 안전 규칙, 스타일, 형식 등 수십 줄의 요구사항을 하나의 시스템 프롬프트에 담을 경우, 한 줄의 수정이 모델이 어떤 규칙을 우선시할지에 대한 예측 불가능한 변화를 일으킵니다. ### 별도 가드레일 적용을 통한 보완과 추천 * 모델 본연의 성능을 유지하면서도 안전성을 확보하기 위해서는 모델 앞뒤에 독립적인 보안 게이트(별도 가드레일)를 세우는 방식이 효과적입니다. * 사용자의 입력 단계에서 위험을 감지해 차단(Tripwires)하거나 안전하게 재작성(Rewriter)하여 전달하고, 모델의 응답 후에도 다시 한번 결과를 점검하는 다층 방어 체계를 구축해야 합니다. * 이를 통해 시스템 프롬프트의 복잡도를 낮추고, 보안 정책의 수정이 모델의 전체 성능(추론 로직)에 직접적인 영향을 주지 않도록 분리하는 것이 실무적으로 권장됩니다.

line

AI 제품 개발 중 마주칠 수 있는 보안 위협 사례와 대책 방안 (새 탭에서 열림)

AI 제품 개발은 생산성을 비약적으로 높여주지만, 환각 현상이나 프롬프트 주입과 같은 새로운 형태의 보안 위협을 동반합니다. 이러한 리스크는 단순히 오답을 제공하는 수준을 넘어 악성코드 설치, 원격 코드 실행(RCE), 민감 정보 유출로 이어질 수 있어 기존과는 다른 다각도의 방어 전략이 필요합니다. LY Corporation은 실제 사례 분석을 통해 AI 모델과 외부 도구 간의 접점을 보호하고 보안 검토를 자동화하는 등의 대응 방안을 구축하고 있습니다. ## 슬랍스쿼팅(Slopsquatting)과 패키지 오인 * AI가 존재하지 않는 소프트웨어 패키지 이름을 마치 실제인 것처럼 제안하는 '환각(Hallucination)' 현상을 악용한 공격입니다. * 예를 들어, AI가 `huggingface_hub[cli]` 대신 `huggingface-cli`라는 잘못된 패키지 설치를 권장할 때, 공격자가 미리 해당 이름으로 악성 패키지를 등록해 두면 사용자가 이를 설치하게 됩니다. * 이를 방지하기 위해 AI가 생성한 코드나 설치 지침을 실행하기 전 반드시 공식 문서와 대조하여 검증하는 절차가 필수적입니다. ## 프롬프트 주입을 통한 원격 코드 실행(RCE) * Vanna AI 사례(CVE-2024-5565)와 같이 자연어를 SQL이나 파이썬 코드로 변환하여 직접 실행하는 서비스에서 주로 발생합니다. * 사용자가 입력창에 악의적인 명령을 주입하여 애플리케이션 권한 내에서 임의의 시스템 명령어를 실행하도록 유도할 수 있습니다. * LLM을 전적으로 신뢰하여 코드를 실행하게 두지 말고, 사용자 입력을 엄격히 검증(Sanitize)하며 데이터 생성 용도로만 제한적으로 활용해야 합니다. ## 오피스 AI에서의 간접 프롬프트 주입 * 이메일이나 문서 본문에 숨겨진 악성 지시사항을 AI가 읽고 실행하게 만드는 '간접 주입' 방식의 위협입니다. * 가령, 피싱 사이트로 유도를 하거나 비밀번호 변경을 종용하는 문구가 포함된 이메일을 AI가 요약하는 과정에서 사용자를 속이는 스크립트를 수행하게 될 수 있습니다. * 입력 데이터뿐만 아니라 AI가 내놓는 출력물에 대해서도 가드레일(Guardrails)을 적용하여 이상 징후를 탐지하는 이중 방어 체계가 필요합니다. ## 코딩 에이전트의 권한 남용 및 데이터 노출 * GitHub MCP(Model Context Protocol)와 같이 자동화된 코딩 에이전트가 공개 저장소와 비공개 저장소에 동시에 접근할 때 발생합니다. * 공개 저장소의 이슈나 PR에 포함된 악성 명령어가 에이전트를 통해 실행되면, 에이전트의 권한을 이용해 비공개 저장소에 있는 급여 정보나 개인정보를 외부로 유출할 수 있습니다. * 에이전트가 접근 가능한 데이터 범위를 최소화하고, 작업 단위별로 권한을 분리하는 보안 디자인이 중요합니다. ## 임베딩 인버전(Embedding Inversion)을 통한 정보 복원 * 텍스트 데이터를 수치화한 벡터 임베딩 값으로부터 원본 텍스트를 역으로 추론해내는 공격 기법입니다. * 임베딩 데이터 자체가 유출될 경우, 비식별화되었다고 판단했던 민감한 정보가 다시 복원되어 프라이버시 침해로 이어질 수 있습니다. * 벡터 데이터베이스에 대한 접근 제어를 강화하고 임베딩 데이터의 보안 수준을 원본 데이터와 동일하게 관리해야 합니다. AI 프로덕트의 안전성을 확보하기 위해서는 기획 단계에서의 보안 디자인 리뷰는 물론, 위협 모델링 자동화 도구인 'ConA'나 소스 코드 취약점 분석 자동화 도구인 'LAVA'와 같은 기술적 솔루션을 적극적으로 도입하여 보안 프로세스를 내재화하는 것이 권장됩니다.

line

한 달짜리 과제, 바이브 코딩으로 5일 만에!(ChatGPT·Cursor) (새 탭에서 열림)

기존의 전통적인 개발 방식은 상세한 요구 사항 정의와 설계 단계에 많은 비용이 소모되어 급변하는 시장 트렌드에 대응하기 어렵습니다. 이 글은 생성형 AI를 활용해 '작동하는 데모'를 빠르게 만들고 이를 수정해 나가는 '바이브 코딩(Vibe Coding)' 전략을 통해, 한 달이 걸릴 과제를 단 5일 만에 해결한 과정을 담고 있습니다. 완벽한 정답보다는 충분히 괜찮은 해답을 빠르게 도출해 검증 루프를 돌리는 것이 핵심입니다. ### 요구 사항과 도메인의 간결한 정의 - 복잡한 메뉴 등록 시스템을 단순화하기 위해, 초기 요구 사항은 메모장에 한 줄 요약과 최우선순위 1~2가지만 정리하여 시작합니다. - 데이터 구조는 화면 구성의 기반이 되므로 가능한 사실에 가깝게 정의하되, 세부적인 내용은 AI의 창의적인 제안을 수용할 수 있도록 여백을 둡니다. - 처음부터 완벽한 명세서를 작성하려 하기보다, AI가 맥락을 파악할 수 있는 핵심 도메인 지식을 전달하는 데 집중합니다. ### 5가지 솔루션 후보 선정 및 구체화 - ChatGPT를 활용해 '스텝퍼형 마법사', '라이브 미리보기', '템플릿 복제', '채팅 입력', 'OCR 사진 촬영' 등 서로 다른 접근 방식의 솔루션 5가지를 도출합니다. - 각 솔루션의 장단점을 분석하여 실무 적용 가능성을 판단하고, 프롬프트를 미세 조정하며 원하는 수준의 답변이 나올 때까지 반복 요청합니다. - 이 과정에서 AI는 맥락을 축적하며 결과물의 품질을 높이며, 사용자는 여러 대안 중 최적의 사용자 경험(UX)을 선택할 수 있는 시야를 확보합니다. ### AI 기반의 와이어프레임 및 상세 설계 - 선정된 각 솔루션별로 필요한 화면 수, UI 요소, 공통 패턴(진행률 표시, 유효성 검사 등)을 AI가 상세히 설계하도록 유도합니다. - 예를 들어 '스텝퍼형'의 경우 8단계의 상세 화면 구성을 정의하고, 각 단계에서 입력받을 필드와 도움말 문구까지 구체화합니다. - 설계 과정에서 누락된 기능이나 우선순위 변경이 발견되면 프롬프트를 수정해 즉시 재설계하며, 물리적 설계 문서 작성의 부담을 최소화합니다. ### Cursor와 Flutter를 활용한 고속 구현 - AI 통합 개발 환경인 Cursor를 사용해 Flutter 기반의 모바일 앱 코드를 생성하며, 단일 코드베이스의 이점을 살려 실험 속도를 극대화합니다. - 먼저 5가지 솔루션의 진입점이 포함된 공통 뼈대(Main Screen)를 작성한 뒤, 각 솔루션을 개별 파일로 나누어 점진적으로 구현합니다. - 처음부터 상태 관리 라이브러리(Riverpod)나 데이터베이스(SQLite) 같은 기술 스택을 고민하지 않고, 기능 위주의 화면 데모를 먼저 만든 후 필요에 따라 스택을 추가하는 역순 방식을 취합니다. 이러한 방식은 '완성물이 최고의 디버거'라는 철학을 바탕으로 합니다. 문서 상의 논의에 시간을 쏟기보다 작동하는 앱을 빠르게 만들어 직접 만져보며 수정하는 것이 결과적으로 더 높은 품질의 제품을 더 빨리 만드는 길입니다. AI는 반복적인 재작업 요청에도 지치지 않으므로, 개발자는 이를 활용해 끊임없이 가설을 검증하고 정답에 가까워지는 '반복의 힘'을 믿어야 합니다.

line

IUI 2025 참관기: AI의 지속성과 인간 중심의 AI에 대해서 (새 탭에서 열림)

IUI(Intelligent User Interfaces) 2025 학회에서는 단순히 기술적 성능이 뛰어난 AI를 넘어, 인간의 능력을 증강하고 윤리적 책임을 존중하는 '인간 중심의 AI(Human-Centered AI)'가 핵심 화두로 다뤄졌습니다. 전문가들은 AI가 인간의 인지와 현실을 어떻게 재설계할 것인지, 그리고 복잡한 모델을 사용자가 어떻게 신뢰하고 통제할 수 있을지에 대한 실천적인 방법론을 제시했습니다. 결론적으로 미래의 AI는 독립적인 자동화 도구가 아니라, 인간과 상호작용하며 함께 성장하고 사회적 맥락 안에서 투명하게 소통하는 협력적 지능으로 진화해야 함을 강조했습니다. **리얼리티 디자인: 인터페이스를 넘어 현실을 설계하는 AI** * HCI(인간-컴퓨터 상호작용) 연구의 범위를 단순한 화면 속 인터페이스에서 인간의 삶이 이루어지는 '현실 자체'로 확장해야 한다는 '리얼리티 디자인' 개념이 제시되었습니다. * AI와 센서, XR 기술을 결합하여 인간의 기억을 기록 및 재구성하거나, 특정 음성을 선택적으로 청취하고 동작을 슬로 모션으로 지각하는 등 인간의 감각과 인지 능력을 물리적으로 증강하는 연구 사례들이 소개되었습니다. * 다만, 기술이 인간의 사고와 학습 의지를 약화시켜 '인지적 퇴화'를 초래할 수 있다는 점이 경고되었으며, 기술과 인간이 서로 영향을 주고받는 순환적 관계임을 고려한 설계가 필요합니다. **인간 중심의 AI 투명성: 사회기술적 간극 해소** * 기존의 기술 중심적 설명 가능성(XAI)에서 벗어나, 사용자가 실제 맥락에서 이해하고 신뢰할 수 있는 '사회기술적(socio-technical)' 관점의 투명성 확보가 강조되었습니다. * 투명성을 구현하기 위한 구체적 방법론으로 확정적이지 않은 결과를 명확히 전달하는 '불확실성 커뮤니케이션', 조건 변화에 따른 결과 차이를 보여주는 '반사실적 설명', 사용자가 피드백을 통해 모델을 조정하는 '상호작용 기반 투명성'이 제시되었습니다. * LLM 시대의 투명성은 단순한 정보 공개를 넘어 모델 카드(Model Card)를 통한 데이터/개발 배경 공유, 안전성 및 리스크 평가 결과 포함, 그리고 사용자가 직접 통제권을 가질 수 있는 수단을 함께 제공하는 방향으로 나아가야 합니다. **인터랙티브 머신러닝: 사용자와 함께 성장하는 모델** * AI를 고정된 데이터를 학습하는 정적 도구로 보지 않고, 사용자가 모델의 오류를 수정하고 그 피드백이 다시 학습에 반영되는 '인간 참여형(Human-in-the-loop)' 루프의 중요성이 재조명되었습니다. * 이 방식은 교육 도구에서 학생들이 데이터를 조작하며 학습 원리를 깨우치게 하거나, 연구 현장에서 대규모 데이터를 분석할 때 인간의 직관을 결합하는 등 다양한 실무 분야에서 인용되고 있습니다. * 좋은 AI의 기준은 독립적인 성능 수치보다 사용자와의 지속적인 상호작용을 통해 얼마나 유연하게 적응하고 발전할 수 있는지에 달려 있습니다. **전문가 협업 시스템: 상담 분석을 돕는 AI** * 아동 상담 분석과 같이 고도의 전문성이 필요한 영역에서 AI가 상담사의 녹취 및 전사 작업을 보조하고, 상담사가 AI의 결과물을 손쉽게 편집 및 교정할 수 있는 협업 시스템 연구가 발표되었습니다. * 이는 AI가 인간의 일자리를 대체하는 것이 아니라, 번거로운 작업을 효율화함으로써 전문가가 본연의 가치 있는 업무에 집중할 수 있도록 돕는 실질적인 협업 모델의 예시를 보여줍니다. **실용적 제언** AI 시스템을 설계할 때 단순히 정확도를 높이는 데 그치지 말고, 사용자가 시스템의 판단 근거를 납득할 수 있는 '설명 수단'과 잘못된 결과를 바로잡을 수 있는 '통제 수단'을 반드시 세트로 설계해야 합니다. 특히 고위험군 서비스를 개발할 때는 모델의 불확실성을 시각적·언어적으로 친절하게 전달하여 사용자가 적절한 수준의 신뢰를 형성하도록 유도하는 것이 중요합니다.

line

LY Corporation의 AI 기술의 현재, Tech-Verse 2025 후기 (새 탭에서 열림)

Tech-Verse 2025는 LY Corporation이 LINE과 Yahoo Japan의 통합 이후 선보인 AI 전략의 핵심과 실무적인 기술 성과를 집약적으로 보여준 행사였습니다. 이번 컨퍼런스에서는 단순한 기술 트렌드 나열을 넘어, RAG와 MCP 등 최신 AI 기술을 실제 서비스와 개발 환경에 적용하며 겪은 시행착오와 구체적인 해결 방안이 중점적으로 다뤄졌습니다. 특히 AI가 개발 프로세스 전체에 스며들어 생산성과 품질을 동시에 확보하는 기술적 내공이 강조되었습니다. **AI 기반 개발 생산성 혁신: Ark Developer** * 사내 개발자들을 위해 구축된 'Ark Developer'는 RAG 기반의 코드 어시스턴트로, 코드 자동 완성, 리뷰, 보안 확인, 테스트 코드 작성을 지원합니다. * 사내 문서를 스트리밍 형태로 실시간 참조하여 코드의 맥락에 맞는 정확한 도움을 제공하며, GitHub와 연동되어 PR 생성까지 자동화된 워크플로우를 보여줍니다. * 단순히 코드 베이스를 텍스트 뭉치로 취급하는 대신, 디렉토리 구조를 그래프 형태로 분석(Graph Analysis)하여 연관 코드를 더욱 정밀하게 참조하는 기술적 차별점을 갖췄습니다. * 실제 현업 개발자들 사이에서 기존의 범용 AI 도구보다 체감 성능이 뛰어나다는 평가를 받으며 개발 사이클 전반에 깊숙이 통합되어 활용되고 있습니다. **생성형 AI의 품질 측정과 정교한 평가 체계** * 주관성이 강한 이미지 생성 기술의 품질을 관리하기 위해 분포 기반의 FID(Fréchet Inception Distance), IS(Inception Score)와 같은 전통적 지표를 넘어 다각적인 평가 모델을 도입했습니다. * 미적 기준을 측정하는 Aesthetic Score, LLM 기반의 CLIP-IQA 및 Q-Align, 그리고 비디오-언어 모델을 활용한 VQA(Visual Question Answering) 방식 등 정밀한 정량 평가를 수행합니다. * 이미지 번역 및 인페인팅 서비스에서는 단순한 텍스트 변환을 넘어 원래의 레이아웃과 구조까지 자연스럽게 복원해야 하는 복합적인 과제를 생성형 AI로 해결하고 있습니다. * 생성형 AI 기술의 완성도는 단순히 모델을 구현하는 것에 그치지 않고, '어떻게 정답이 없는 결과를 객관적으로 검증하고 개선할 것인가'에 달려 있음을 시사합니다. **실무형 AI 도입을 위한 통찰** 이번 컨퍼런스는 LLM과 에이전트 기술이 실험실을 벗어나 실제 서비스의 품질을 결정짓는 성숙기에 접어들었음을 보여줍니다. 특히 생성형 AI 결과물에 대한 정량적 평가 지표를 수립하고, 코드 베이스를 그래프 구조로 분석하는 등의 구체적인 접근법은 AI 서비스를 고도화하려는 실무자들에게 매우 유용한 벤치마킹 사례가 될 것입니다. 단순한 기술 도입보다는 우리 조직의 데이터 구조와 서비스 특성에 맞는 '평가와 검증 체계'를 먼저 고민하는 것이 품질 높은 AI 서비스를 만드는 핵심입니다.

line

AI와 글쟁이의 동행: 코드 주면 API 레퍼런스 써드려요 (새 탭에서 열림)

기술 문서 부족 문제를 해결하기 위해 엔지니어링 관점에서 접근한 이 글은, 생성형 AI를 활용해 사내 기술 컨텍스트와 스타일 가이드가 반영된 API 레퍼런스를 자동 생성하는 프로젝트 과정을 소개합니다. 일반적인 코딩 어시스턴트의 한계를 극복하기 위해 프롬프트 워크플로를 최적화하고, 특정 IDE에 종속되지 않도록 MCP(Model Context Protocol)를 도입하여 범용성을 확보했습니다. 최종적으로 AI가 생성한 결과물은 높은 품질을 보였으나, 기술 문서의 특성상 정확성을 담보하기 위한 인간의 검토 단계가 필수적임을 강조하며 결론을 맺습니다. ## 기존 AI 도구의 한계와 도큐먼트 엔지니어링의 목표 * 기술 문서는 항상 부족하며, 개발자 교육만으로는 시간과 관심의 부재라는 근본적인 원인을 해결하기 어렵다는 판단하에 자동화 프로세스를 구축했습니다. * GitHub Copilot과 같은 기존 도구는 코드 파악 능력은 뛰어나지만, 사내 전용 기술 용어나 특수한 스타일 가이드, 프로젝트별 컨텍스트를 반영하지 못하는 단점이 있습니다. * '사내 정보를 참고해 스타일 가이드에 맞는 API 주석을 작성하고, 이를 한곳에서 배포하기'를 목표로 테크니컬 라이터의 노하우를 자동화 공정에 이식했습니다. ## 프롬프트 최적화와 단계별 워크플로 구성 * 초기에는 방대한 지시 사항이 담긴 긴 프롬프트를 사용했으나, LLM이 복잡한 지시를 놓치는 문제가 발생하여 실행 단계를 세분화했습니다. * 처리 속도와 정확도 사이의 타협점을 찾기 위해 '프로그래밍 언어 인식', 'API 파악 및 예제 작성', '설명 및 파라미터/응답 값 작성'의 3단계 워크플로로 압축했습니다. * LINE의 고유 식별자인 'MID'를 단순한 약어(Member ID 등)로 오해하지 않고 사내 정의에 맞게 설명하도록 컨텍스트를 주입하여 일반 AI 도구와 차별화된 품질을 구현했습니다. ## 범용성 확보를 위한 MCP(Model Context Protocol) 도입 * 초기 프로토타입은 VS Code 익스텐션으로 제작했으나, IntelliJ 등 다양한 IDE를 사용하는 개발자들의 요구를 수용하기 위해 MCP 기반으로 전환했습니다. * MCP 서버는 클라이언트와의 통신에만 집중하므로, UI 구현에 드는 비용을 줄이고 언어 판별이나 코드 블록 선택 같은 부가 기능을 MCP 호스트(IDE 등)에 위임할 수 있습니다. * 사용자가 AI와 대화하며 파라미터를 입력하는 방식은 현대적인 AI 사용 경험에 부합하며, 특정 도구에 종속되지 않는 범용적인 문서화 솔루션을 제공합니다. ## AI 문서화의 성과와 실질적인 한계 * 자체 평가 결과, 생성된 주석의 88%가 기준을 만족했으며 78%의 사례에서 GitHub Copilot보다 우수한 품질의 설명을 생성하는 성과를 거두었습니다. * 그러나 AI는 확률 기반으로 작동하므로 100%의 정확성을 보장하지 못하며, 단 한 줄의 오류가 문서 전체의 신뢰도를 떨어뜨리는 API 레퍼런스의 특성상 위험 요소가 존재합니다. * 따라서 AI를 '완벽하지 않은 동반자'로 정의하고, AI가 초안을 대량으로 빠르게 생산하되 마지막 단계에서는 반드시 담당 개발자가 내용을 검토하는 '사람 중심의 검증' 프로세스를 권장합니다.