라인 / rag

4 개의 포스트

line

엔터프라이즈 LLM 서비스 구축기 1: 컨텍스트 엔지니어링 (새 탭에서 열림)

대규모 엔터프라이즈 환경에서 LLM 서비스를 구축할 때는 정교한 지시어(프롬프트 엔지니어링)보다 AI에게 필요한 정보만 선별해 제공하는 '컨텍스트 엔지니어링'이 더욱 중요합니다. LY Corporation은 260개가 넘는 API와 방대한 문서를 다루는 클라우드 AI 어시스턴트를 개발하며, 컨텍스트의 양이 늘어날수록 모델의 추론 성능이 하락하고 환각 현상이 발생하는 문제를 확인했습니다. 이를 해결하기 위해 사용자의 의도에 맞춰 필요한 도구와 가이드라인만 실시간으로 주입하는 '점진적 공개' 전략과 시스템 프롬프트의 충돌을 방지하는 '모의 도구 메시지' 기법을 도입하여 성능과 정확도를 동시에 확보했습니다. ### 컨텍스트 과부하와 성능의 상관관계 * **정보량과 성능의 반비례**: 최신 LLM은 수십만 토큰의 컨텍스트 윈도우를 지원하지만, 입력 길이가 길어질수록 핵심 정보를 찾는 능력이 최대 85%까지 급격히 하락합니다. * **노이즈로 인한 판단력 저하**: 질문과 유사해 보이지만 실제로는 관계없는 정보(노이즈)가 섞이면 모델이 당당하게 가짜 정보를 생성하는 환각 현상이 빈번해집니다. * **토큰 소모 효율성**: LLM은 이전 대화를 기억하지 못하는 스테이트리스(stateless) 구조이므로, 대화가 길어지고 API의 JSON 응답이 누적되면 64K 토큰 정도의 용량은 순식간에 소모되어 비용과 성능에 악영향을 줍니다. ### 도구 선별을 통한 컨텍스트 절약 * **선별적 로드**: 260개의 모든 API 도구를 한 번에 컨텍스트에 올리지 않고, 사용자의 질문에서 제품군(예: Redis, Kubernetes)을 먼저 식별합니다. * **도구 최적화**: 사용자가 특정 제품에 대해 물을 때만 관련된 소수의 도구(API)만 선별하여 제공함으로써 모델의 인지 부하를 획기적으로 줄입니다. ### 응답 가이드라인과 점진적 공개 전략 * **상황별 지침 주입**: "리소스 변경 시 UI 안내 우선"과 같이 특정 조건에서만 필요한 운영 지침을 '응답 가이드라인'으로 정의하고, 질문의 성격에 따라 필요한 시점에만 선택적으로 로드합니다. * **시스템 프롬프트와 가이드라인의 분리**: 모든 상황에 적용되는 '대원칙'은 시스템 프롬프트에, 특정 상황의 '행동 절차'는 가이드라인에 배치하여 관리 효율을 높입니다. ### 모의 도구 메시지(ToolMessage)를 활용한 환각 방지 * **프롬프트 충돌 문제**: 새로운 가이드라인을 단순히 시스템 프롬프트 뒤에 추가할 경우, 모델이 기존의 대원칙(예: "반드시 검색 결과로만 답변하라")을 무시하고 가이드라인에만 매몰되어 환각을 일으키는 현상이 발생했습니다. * **도구 메시지 전략**: 가이드라인을 시스템 프롬프트에 넣는 대신, 마치 검색 도구를 실행해서 얻은 결과값인 것처럼 '도구 메시지(ToolMessage)' 형식으로 주입합니다. * **전략의 효과**: 이 방식을 통해 LLM은 시스템 프롬프트의 대원칙을 준수하면서도, 주입된 가이드라인을 도구로부터 얻은 최신 정보로 인식하여 훨씬 정확하고 일관된 답변을 생성하게 됩니다. 엔터프라이즈 LLM 서비스의 핵심은 모델의 지능을 믿고 모든 데이터를 던져주는 것이 아니라, 모델이 가장 똑똑하게 판단할 수 있도록 최적의 정보만 정교하게 큐레이션하여 전달하는 설계 능력에 있습니다. 특히 복잡한 비즈니스 로직이나 사내 고유 지식을 반영해야 할 때는 시스템 프롬프트를 비대하게 만드는 대신, 도구 메시지나 동적 컨텍스트 주입 기술을 활용해 모델의 판단 체계를 보호하는 것이 실질적인 해결책이 됩니다.

line

LY Corporation의 AI 기술의 현재, Tech-Verse 2025 후기 (새 탭에서 열림)

Tech-Verse 2025는 LY Corporation이 LINE과 Yahoo Japan의 통합 이후 선보인 AI 전략의 핵심과 실무적인 기술 성과를 집약적으로 보여준 행사였습니다. 이번 컨퍼런스에서는 단순한 기술 트렌드 나열을 넘어, RAG와 MCP 등 최신 AI 기술을 실제 서비스와 개발 환경에 적용하며 겪은 시행착오와 구체적인 해결 방안이 중점적으로 다뤄졌습니다. 특히 AI가 개발 프로세스 전체에 스며들어 생산성과 품질을 동시에 확보하는 기술적 내공이 강조되었습니다. **AI 기반 개발 생산성 혁신: Ark Developer** * 사내 개발자들을 위해 구축된 'Ark Developer'는 RAG 기반의 코드 어시스턴트로, 코드 자동 완성, 리뷰, 보안 확인, 테스트 코드 작성을 지원합니다. * 사내 문서를 스트리밍 형태로 실시간 참조하여 코드의 맥락에 맞는 정확한 도움을 제공하며, GitHub와 연동되어 PR 생성까지 자동화된 워크플로우를 보여줍니다. * 단순히 코드 베이스를 텍스트 뭉치로 취급하는 대신, 디렉토리 구조를 그래프 형태로 분석(Graph Analysis)하여 연관 코드를 더욱 정밀하게 참조하는 기술적 차별점을 갖췄습니다. * 실제 현업 개발자들 사이에서 기존의 범용 AI 도구보다 체감 성능이 뛰어나다는 평가를 받으며 개발 사이클 전반에 깊숙이 통합되어 활용되고 있습니다. **생성형 AI의 품질 측정과 정교한 평가 체계** * 주관성이 강한 이미지 생성 기술의 품질을 관리하기 위해 분포 기반의 FID(Fréchet Inception Distance), IS(Inception Score)와 같은 전통적 지표를 넘어 다각적인 평가 모델을 도입했습니다. * 미적 기준을 측정하는 Aesthetic Score, LLM 기반의 CLIP-IQA 및 Q-Align, 그리고 비디오-언어 모델을 활용한 VQA(Visual Question Answering) 방식 등 정밀한 정량 평가를 수행합니다. * 이미지 번역 및 인페인팅 서비스에서는 단순한 텍스트 변환을 넘어 원래의 레이아웃과 구조까지 자연스럽게 복원해야 하는 복합적인 과제를 생성형 AI로 해결하고 있습니다. * 생성형 AI 기술의 완성도는 단순히 모델을 구현하는 것에 그치지 않고, '어떻게 정답이 없는 결과를 객관적으로 검증하고 개선할 것인가'에 달려 있음을 시사합니다. **실무형 AI 도입을 위한 통찰** 이번 컨퍼런스는 LLM과 에이전트 기술이 실험실을 벗어나 실제 서비스의 품질을 결정짓는 성숙기에 접어들었음을 보여줍니다. 특히 생성형 AI 결과물에 대한 정량적 평가 지표를 수립하고, 코드 베이스를 그래프 구조로 분석하는 등의 구체적인 접근법은 AI 서비스를 고도화하려는 실무자들에게 매우 유용한 벤치마킹 사례가 될 것입니다. 단순한 기술 도입보다는 우리 조직의 데이터 구조와 서비스 특성에 맞는 '평가와 검증 체계'를 먼저 고민하는 것이 품질 높은 AI 서비스를 만드는 핵심입니다.

line

LY의 테크 컨퍼런스, 'Tech-Verse 2025' 후기 (새 탭에서 열림)

LY Corporation(이하 LY)은 기술 컨퍼런스 'Tech-Verse 2025'를 통해 합병 이후의 플랫폼 통합 전략과 AI 기업으로의 전환 비전을 제시했습니다. LY는 자체 프라이빗 클라우드 구축을 통해 압도적인 비용 절감과 보안 강화를 실현하고, 모든 서비스에 AI 에이전트를 도입하여 사용자 경험을 혁신할 계획입니다. 특히 생성형 AI를 활용한 개발 프로세스의 전면적인 진화로 엔지니어가 서비스 본질에 집중할 수 있는 환경을 구축하는 것이 핵심입니다. **CatalystOne: 고효율 통합 플랫폼 구축** * **자체 클라우드 기반의 비용 최적화**: 퍼블릭 클라우드 대비 약 4배의 비용 절감 효과를 거두고 있으며, 50만 대의 서버와 3Tbps에 달하는 대규모 트래픽을 효율적으로 관리하고 있습니다. * **플랫폼 통합(CatalystOne)**: 합병 후 중복된 인프라를 'CatalystOne'이라는 이름 아래 통합하여 기술, 엔지니어, 시설 등 핵심 자원의 운영 집중도를 높였습니다. * **보안 및 혁신 가속화**: 통합된 플랫폼을 통해 거버넌스를 강화하고, 폭발적인 데이터 성장과 생성형 AI 수요에 기민하게 대응할 수 있는 차세대 프라이빗 클라우드 'Flava'를 구축했습니다. **전 서비스의 AI 에이전트화와 개발 혁신** * **퍼스널 에이전트 구현**: 현재 44개 서비스에 생성형 AI를 도입했으며, 수천만 개의 에이전트를 연계하여 개별 사용자의 니즈를 정교하게 지원하는 것을 목표로 합니다. * **AI 기반 개발 솔루션 도입**: 2025년 7월부터 모든 엔지니어에게 AI 개발 솔루션을 전면 도입하며, RAG(검색 증강 생성) 기술로 사내 지식을 활용해 코드 품질을 높입니다. * **생산성 지표의 획기적 개선**: PoC 결과 'Code Assist'는 96%의 정답률을 기록했고, 'Auto Test' 도입으로 테스트 시간을 97% 단축하는 등 압도적인 개발 효율성 향상을 확인했습니다. **실용적인 결론** LY의 전략은 대규모 인프라를 운영하는 기업이 단순히 AI를 도입하는 것에 그치지 않고, 인프라 통합을 통한 비용 효율화와 AI를 활용한 개발 문화 혁신이 병행되어야 함을 보여줍니다. 특히 엔지니어링 환경에 AI를 적극적으로 이식하여 확보한 리소스를 사용자 가치 증대에 재투자하는 선순환 구조는 기술 기업들이 참고할 만한 모델입니다.

line

문의 대응을 효율화하기 위한 RAG 기반 봇 도입하기 (새 탭에서 열림)

LY 주식회사의 SR(Service Reliability) 팀은 반복되는 AWX 플랫폼 관련 문의를 효율적으로 처리하기 위해 RAG(검색 증강 생성) 기반의 지원 봇을 도입했습니다. 이 시스템은 사용자가 방대한 가이드 문서를 읽지 않고 중복된 질문을 던질 때 발생하는 운영 리소스 소모 문제를 해결하기 위해 고안되었습니다. 사내 위키와 과거 상담 이력을 활용해 정확도 높은 답변을 생성함으로써 관리자의 개입 없이도 사용자 문제를 신속하게 해결하는 성과를 거두었습니다. **AWX 지원 봇의 기술 스택 및 구성** - **LLM 및 프레임워크:** OpenAI의 GPT 모델을 메인 엔진으로 사용하며, LangChain 프레임워크를 통해 전체적인 워크플로를 관리합니다. Slack과의 연동은 Bolt for Python을 활용했습니다. - **임베딩 모델:** 다국어 지원 및 문장 비교 성능이 뛰어난 'paraphrase-multilingual-mpnet-base-v2' 모델(SBERT)을 선택하여 글로벌 임직원의 다양한 언어 문의에 대응합니다. - **벡터 데이터베이스:** 사내에서 PaaS 형태로 제공되어 접근성이 높은 OpenSearch를 사용하며, 텍스트 데이터를 고차원 벡터로 변환하여 저장하고 검색합니다. **RAG 및 벡터 검색을 통한 답변 정확도 향상** - **LLM의 한계 극복:** 학습되지 않은 최신 정보 부재나 허위 정보 생성(Hallucination) 문제를 해결하기 위해, 질문과 관련된 신뢰할 수 있는 컨텍스트를 LLM에 함께 전달하는 RAG 기법을 적용했습니다. - **벡터 검색 원리:** 사용자의 질문을 임베딩하여 벡터화한 뒤, 벡터 DB 내에서 의미적으로 유사한 문장들을 k-NN(최근접 이웃) 방식으로 검색하여 최적의 참고 자료를 추출합니다. - **유사도 기반 추출:** 단순 키워드 매칭이 아닌 의미적 유사성을 판단하므로, 'Buy'와 'Purchase'처럼 단어는 달라도 맥락이 같은 정보를 정확히 찾아낼 수 있습니다. **봇 워크플로 및 데이터 활용 전략** - **사용자 상호작용:** 사용자가 Slack으로 문의하면 봇이 사내 위키와 과거 Slack 스레드 데이터를 검색합니다. 추출된 데이터를 바탕으로 LLM이 1차 답변을 제공하며, 해결되지 않을 경우에만 '관리자 호출' 버튼을 통해 담당자를 연결합니다. - **데이터 소스 다각화:** 공식 가이드 문서뿐만 아니라 실제 사용자들이 겪었던 문제와 해결책이 담긴 'Slack 문의 스레드 데이터'를 함께 인덱싱하여 실무적인 답변이 가능하도록 구성했습니다. - **리소스 최적화:** 봇의 자동 응답을 통해 단순 반복 문의에 대한 관리자의 수동 대응 시간을 줄이고, 개발 조직이 서비스 운영 본연의 업무에 더 집중할 수 있는 환경을 조성했습니다. RAG 기반 시스템을 구축할 때 가장 중요한 것은 신뢰할 수 있는 데이터 소스의 확보입니다. LY의 사례처럼 공식 문서와 실제 상담 이력을 병행 활용하면 LLM이 훨씬 구체적이고 실무에 유효한 답변을 생성할 수 있습니다. 운영 중인 서비스의 문의 대응 리소스가 부담된다면, 익숙한 벡터 DB와 오픈소스 임베딩 모델을 조합한 RAG 봇 도입을 적극 추천합니다.