Meta / automation

2 개의 포스트

meta

DrP: Meta's Root Cause Analysis Platform at Scale (새 탭에서 열림)

Meta가 개발한 **DrP(Root Cause Analysis platform)**는 대규모 시스템에서 발생하는 장애 조사 과정을 프로그래밍 방식으로 자동화하여 평균 복구 시간(MTTR)을 혁신적으로 단축하는 플랫폼입니다. 기존의 수동 조사와 노후화된 플레이북이 유발하는 온콜(On-call) 엔지니어의 피로도 문제를 해결하기 위해, 분석 로직을 코드로 작성하고 실행할 수 있는 통합 환경을 제공합니다. 현재 Meta 내 300개 이상의 팀에서 매일 5만 건 이상의 분석을 수행하며, 장애 복구 시간을 20%에서 최대 80%까지 줄이는 성과를 내고 있습니다. ### DrP의 핵심 구성 요소 * **표현력이 풍부한 SDK**: 엔지니어가 조사 워크플로우를 '분석기(Analyzer)'라는 코드로 구현할 수 있게 돕습니다. 이상 탐지, 시계열 상관관계 분석, 차원 분석 등 복잡한 데이터 분석을 위한 머신러닝 알고리즘과 헬퍼 라이브러리를 포함합니다. * **확장 가능한 백엔드**: 수만 건의 분석을 동시에 처리할 수 있는 멀티 테넌트 실행 환경을 제공하며, 각 분석 작업이 안전하게 격리되어 실행되도록 보장합니다. * **워크플로우 통합 및 후처리**: 알림(Alert) 시스템 및 장애 관리 도구와 긴밀하게 통합되어 장애 발생 시 자동으로 분석을 시작합니다. 분석 후에는 티켓 생성이나 코드 수정 요청(PR)과 같은 후속 조치를 자동으로 수행하는 기능도 갖추고 있습니다. ### 분석기(Analyzer)의 작성 및 실행 흐름 * **코드 기반 플레이북 작성**: 엔지니어는 SDK를 사용하여 장애 조사의 의사결정 트리를 코드로 작성합니다. 이 과정에서 종속된 서비스들의 분석기를 서로 연결(Chaining)하여 복합적인 장애 원인을 추적할 수 있습니다. * **자동화된 검증**: 작성된 분석기는 배포 전 코드 리뷰 도구와 통합된 백테스트(Backtesting) 과정을 거쳐 품질과 신뢰성을 검증받습니다. * **즉각적인 통찰력 제공**: 장애가 감지되면 DrP 백엔드가 즉시 분석기를 가동합니다. 온콜 엔지니어는 장애 알림을 받는 동시에 시스템이 이미 분석해 놓은 근본 원인과 권장 조치 사항을 확인할 수 있습니다. ### 도입 효과 및 운영 가치 * **MTTR의 획기적 단축**: 수동으로 몇 시간씩 걸리던 데이터 수집과 분류 작업을 자동화함으로써 장애 복구 속도를 가속화하고 시스템 가용성을 높입니다. * **온콜 생산성 향상**: 반복적이고 소모적인 디버깅 작업을 기계가 대신 처리하게 함으로써 엔지니어가 더 복잡하고 가치 있는 문제 해결에 집중할 수 있게 합니다. * **조사의 일관성 확보**: 개인의 숙련도에 의존하던 조사 방식을 코드화된 워크플로우로 표준화하여, 어떤 엔지니어가 대응하더라도 동일한 수준의 고품질 분석 결과를 얻을 수 있습니다. **결론적으로**, DrP는 대규모 마이크로서비스 환경에서 발생하는 복잡한 장애를 해결하기 위해 '운영의 코드화'를 실현한 사례입니다. 시스템 규모가 커짐에 따라 수동 대응의 한계를 느끼는 조직이라면, DrP와 같은 자동화된 RCA 플랫폼을 도입하여 인프라의 안정성과 엔지니어의 생산성을 동시에 확보하는 전략이 권장됩니다.

meta

How AI Is Transforming the Adoption of Secure-by-Default Mobile Frameworks (새 탭에서 열림)

Meta는 잠재적으로 위험한 OS 및 서드파티 기능을 안전한 기본값(Secure-by-default)으로 래핑하는 프레임워크를 통해 개발자의 속도를 유지하면서도 보안을 강화하고 있습니다. 이러한 프레임워크는 기존 API와 유사한 구조를 가져가고 공개된 안정적 API를 기반으로 설계되어 개발자의 마찰을 최소화하고 채택률을 극대화합니다. 특히 생성형 AI와 자동화 기술을 결합함으로써 대규모 코드베이스 전반에 걸쳐 취약한 패턴을 식별하고 보안 프레임워크로의 전환을 가속화하고 있습니다. ### 기본 보안 프레임워크의 설계 원칙 * **기존 API와의 유사성 유지**: 보안 API를 기존의 익숙한 API와 유사하게 설계하여 개발자의 인지적 부담을 줄이고, 불안전한 코드에서 안전한 코드로의 자동 변환을 용이하게 합니다. * **공개 및 안정적 API 기반 구축**: OS 제조사나 서드파티의 비공개 API 대신 공개된 안정적 API 위에 프레임워크를 빌드하여, OS 업데이트 시 발생할 수 있는 호환성 문제와 유지보수 위험을 방지합니다. * **범용적 사용성 확보**: 특정 보안 사례에만 국한되지 않고 다양한 앱과 OS 버전에서 폭넓게 사용할 수 있도록 소규모 라이브러리 형태로 설계하여 배포와 유지보수의 효율성을 높입니다. ### SecureLinkLauncher(SLL)를 통한 인텐트 하이재킹 방지 * **인텐트 유출 차단**: Android의 인텐트 시스템을 통해 민감한 정보가 외부로 유출되는 '인텐트 하이재킹' 취약점을 해결하기 위해 개발되었습니다. * **의미론적 API 래핑**: `startActivity()`나 `startActivityForResult()` 같은 표준 Android API를 `launchInternalActivity()`와 같은 보안 API로 래핑하여, 내부적으로 보안 검증 절차를 거친 후 안전하게 인텐트를 전송합니다. * **범위 검증(Scope Verification) 강제**: 인텐트가 타겟팅하는 패키지를 명확히 제한함으로써, 악성 앱이 동일한 인텐트 필터를 사용하여 민감한 데이터를 가로채는 것을 원천적으로 방지합니다. ### AI 및 자동화를 활용한 보안 채택 가속화 * **취약 패턴 자동 식별**: 생성형 AI 도구를 활용하여 방대한 코드베이스 내에서 보안에 취약한 API 사용 패턴을 실시간으로 감지합니다. * **코드 마이그레이션 자동화**: AI가 안전하지 않은 API 호출을 적절한 보안 프레임워크 호출로 자동 교체하거나 수정 제안을 제공하여 대규모 코드 전환 비용을 절감합니다. * **일관된 보안 규정 준수**: 자동화된 모니터링을 통해 개발 초기 단계부터 보안 프레임워크 사용을 강제함으로써 전체 에코시스템의 보안 수준을 상향 평준화합니다. 보안을 위해 개발자 경험(DX)을 희생하는 대신, 기존 개발 워크플로우에 자연스럽게 스며드는 도구를 제공하는 것이 핵심입니다. 특히 대규모 조직일수록 AI를 활용한 자동 마이그레이션 전략을 병행하여 보안 프레임워크의 도입 장벽을 낮추고 코드의 안전성을 지속적으로 유지할 것을 권장합니다.