네이버 / frontend

2 개의 포스트

naver

디자인시스템이 AI를 만났을 때: FE 개발 패러다임의 변화 (새 탭에서 열림)

디자인 시스템과 AI의 결합은 단순한 도구의 조합을 넘어 프론트엔드(FE) 개발의 마크업 작업 방식을 근본적으로 혁신하고 있습니다. 네이버파이낸셜은 체계적으로 구축된 디자인 시스템을 기반으로 AI를 활용해 마크업 과정을 자동화함으로써 반복적인 코딩 시간을 단축하고 개발 효율성을 극대화했습니다. 다만, AI가 생성한 결과물을 실무에 즉시 투입하기 위해서는 디자인 토큰의 정교한 관리와 개발자의 세밀한 조정 작업이 반드시 병행되어야 한다는 점을 시사합니다. **네이버파이낸셜 디자인시스템의 근간: 토큰과 컴포넌트** * 디자인 시스템의 핵심인 '디자인 토큰'을 통해 색상, 간격, 폰트 등의 시각적 요소를 정의하고 디자이너와 개발자가 동일한 언어를 사용하도록 환경을 구축했습니다. * 재사용 가능한 UI 컴포넌트 단위를 명확히 정의하여, AI가 일관성 있는 코드를 생성할 수 있는 구조적 토대를 마련했습니다. * 단순한 UI 라이브러리를 넘어, 디자인 시스템 자체가 AI가 학습하고 참조할 수 있는 '신뢰할 수 있는 단일 소스(Single Source of Truth)' 역할을 수행합니다. **AI 마크업 효율을 극대화하는 Code Connect와 인스트럭션** * Figma의 'Code Connect' 기능을 활용해 디자인 도구 내의 컴포넌트와 실제 리액트(React) 코드를 직접 연결하여 AI가 맥락에 맞는 코드를 제안하도록 설계했습니다. * 디자인 시스템의 고유한 규칙과 코딩 컨벤션을 담은 상세한 '인스트럭션(Instruction)'을 AI에게 제공함으로써, 범용적인 코드가 아닌 팀의 표준에 부합하는 결과물을 얻어냈습니다. * 이 과정을 통해 개발자는 빈 화면에서 시작하는 대신, AI가 생성한 초안을 바탕으로 비즈니스 로직 구현에 더 집중할 수 있게 되었습니다. **현실적인 개발 도입 과정에서의 한계와 극복** * AI가 존재하지 않는 컴포넌트를 만들어내거나 잘못된 속성을 사용하는 '할루시네이션(환각)' 현상이 여전히 발생하여 개발자의 검토 과정이 필수적입니다. * 복잡한 레이아웃이나 고도의 인터랙션이 포함된 화면의 경우, AI가 단번에 완벽한 마크업을 생성하기 어렵다는 점을 확인했습니다. * 마크업 자동화가 성공하기 위해서는 단순히 AI 툴을 쓰는 것을 넘어, 디자인 시스템의 코드 품질과 문서화 수준이 먼저 뒷받침되어야 함을 실증했습니다. **마크업 자동화 이후의 FE 개발자 역할 변화** * 과거에 직접 태그를 입력하고 스타일을 잡던 수동적인 마크업 작업의 비중이 줄어들고, 생성된 코드를 조립하고 검증하는 '오케스트레이터'로서의 역할이 강조됩니다. * 단순 반복 작업에서 벗어나 더 복잡한 비즈니스 문제 해결과 사용자 경험(UX) 고도화에 개발 자원을 투입할 수 있는 환경이 조성되었습니다. * 결과적으로 AI는 개발자의 대체제가 아니라, 디자인 시스템이라는 약속된 규칙 위에서 함께 협업하는 강력한 동료로서 기능하게 됩니다. 성공적인 AI 기반 개발 환경을 구축하려면 디자인 시스템을 단순한 가이드가 아니라 **AI가 읽을 수 있는 데이터 구조**로 정교화하는 선행 작업이 가장 중요합니다. AI에게 맡길 영역과 개발자가 직접 제어할 영역을 명확히 구분하고, 코드 리뷰 단계를 강화하여 코드 품질을 유지하는 전략이 권장됩니다.

naver

네이버 TV (새 탭에서 열림)

네이버 통합검색은 방대한 클릭 로그를 히트맵과 히스토그램으로 시각화하여 사용자의 행동 패턴을 직관적으로 분석하고 있습니다. 단순한 정량적 수치를 넘어 시각적 데이터를 활용함으로써 서비스 개선을 위한 구체적이고 객관적인 근거를 확보하는 것이 핵심입니다. 이를 통해 빠르게 변화하는 검색 서비스 환경에서도 사용자 중심의 최적화된 UX를 도출하는 기술적 노하우를 공유합니다. **히트맵과 히스토그램을 통한 데이터 시각화** * 클릭 로그를 히트맵 형태로 변환하여 사용자가 페이지 내 어느 요소에 가장 많이 반응하고 어디에서 이탈하는지 시각적으로 즉각 파악합니다. * 히스토그램을 활용해 단순 클릭 횟수뿐만 아니라 데이터의 분포와 흐름을 분석하여 사용자 행동의 맥락을 이해합니다. * 숫자로만 이루어진 정량적 데이터의 한계를 극복하고, 서비스 개선을 위한 직관적인 인사이트를 제공합니다. **동적 검색 서비스 대응 및 인프라 구축** * 실시간으로 변화하고 고도화되는 네이버 통합검색 환경에 맞춰 클라이언트 로그를 수집하고 시각화하는 FE 인프라 기술을 적용했습니다. * 다양한 UI 구성 요소와 서비스 변화 속에서도 시각화 데이터의 정확성을 유지하기 위해 겪은 시행착오와 해결 방안을 포함합니다. * 웹 페이지 내 사용자 소비 방식을 정밀하게 확인하고 싶은 개발자와 기획자를 위해 기술적 구현 방법론을 제시합니다. 데이터 분석 결과가 실제 서비스 개선으로 이어지기 위해서는 수치 뒤에 숨겨진 사용자의 의도를 읽어내는 것이 중요합니다. 시각적 분석 도구를 활용하면 데이터 해석의 격차를 줄이고, 팀 구성원 모두가 공감할 수 있는 서비스 개선 방향을 설정하는 데 큰 도움이 될 것입니다.