경험이 쌓일수록 똑똑해지는 네이버 통합검색 LLM Devops Agent (새 탭에서 열림)

네이버 통합검색은 서비스 복잡도가 급증함에 따라 발생하는 장애 대응의 한계를 극복하기 위해 LLM 기반의 DevOps 에이전트를 도입했습니다. 이 에이전트는 단순히 장애 알람을 전달하는 수준을 넘어, 시스템 메트릭과 로그를 스스로 분석하고 최적의 조치 방안을 추천하며 경험을 통해 지속적으로 진화합니다. 결과적으로 복잡한 검색 인프라 운영의 효율성을 극대화하고 장애 복구 시간(MTTR)을 단축하는 것을 목표로 합니다.

기존 장애 대응 프로세스의 한계

  • 네이버 검색은 수많은 마이크로서비스가 복잡하게 얽혀 있어, 장애 발생 시 원인을 파악하기 위해 확인해야 할 메트릭과 로그의 양이 방대합니다.
  • 기존의 룰 기반(Rule-based) 시스템은 정해진 규칙 외의 변칙적인 장애 상황에 유연하게 대응하기 어렵고, 운영자의 숙련도에 따라 대응 속도 차이가 크게 발생했습니다.
  • 장애 상황마다 산재한 데이터를 수동으로 취합하고 분석하는 과정에서 발생하는 인지적 부하와 시간 지연이 주요 해결 과제로 대두되었습니다.

Devops Agent의 구조적 진화 (v1에서 v2로)

  • v1 설계 및 한계: 초기 버전은 기본적인 데이터 수집과 리포팅 자동화에 집중했으나, 다양한 인프라 환경에서 발생하는 복합적인 컨텍스트를 LLM이 완벽히 이해하고 추론하기에는 한계가 있었습니다.
  • v2 구조 개선: v1의 한계를 극복하기 위해 Agentic Workflow를 강화하여, 에이전트가 상황에 따라 필요한 도구(Tools)를 스스로 선택하고 분석 단계를 세분화하여 실행하도록 재설계했습니다.
  • SW Stack 고도화: 최신 LLM 프레임워크와 네이버의 인프라 데이터를 효율적으로 결합하여, 실시간으로 변화하는 시스템 상태를 에이전트가 즉각적으로 파악할 수 있는 기반을 마련했습니다.

시스템 동작과 이상 탐지 메커니즘

  • Trigger Queue: 모든 장애 징후와 알람을 큐(Queue) 시스템으로 관리하여 분석의 우선순위를 정하고, 누락 없는 대응이 가능하도록 설계했습니다.
  • 이상 탐지(Anomaly Detection): 단순 임계치 기반 알람이 아니라, 통계적 모델과 AI를 활용해 평상시 패턴에서 벗어나는 이상 현상을 정교하게 포착합니다.
  • 평가 체계: 에이전트가 내놓은 분석 결과와 추천 액션의 정확도를 지속적으로 평가하며, 실제 엔지니어의 피드백을 학습 데이터로 환류시켜 분석 품질을 높입니다.

지속 가능한 DevOps를 위한 향후 과제

  • 컨텍스트 확대: 장애 당시의 로그뿐만 아니라 배포 이력, 설정 변경 내역 등 더 넓은 범위의 데이터를 연동하여 분석의 정확도를 높이고 있습니다.
  • 액션 추천 및 자동화: 장애 원인 분석을 넘어 "특정 서버 그룹의 트래픽을 차단하라"와 같이 구체적인 실행 코드를 생성하거나 직접 조치하는 단계로 확장 중입니다.
  • 지속 가능한 학습: 새로운 유형의 장애가 발생할 때마다 이를 지식화하여 에이전트가 다음번 유사 사례에서 더 똑똑하게 대응할 수 있는 선순환 구조를 구축하고 있습니다.

이 시스템은 인프라 운영자가 반복적인 데이터 취합 업무에서 벗어나 의사결정과 문제 해결에만 집중할 수 있는 환경을 제공합니다. LLM 에이전트의 도입은 단순한 도구 활용을 넘어, 대규모 시스템 운영 노하우를 데이터화하고 지능화된 자동화로 전환하는 중요한 기술적 이정표가 될 것입니다.