IUI 2025 참관기: AI의 지속성과 인간 중심의 AI에 대해서 (새 탭에서 열림)
IUI(Intelligent User Interfaces) 2025 학회에서는 단순히 기술적 성능이 뛰어난 AI를 넘어, 인간의 능력을 증강하고 윤리적 책임을 존중하는 '인간 중심의 AI(Human-Centered AI)'가 핵심 화두로 다뤄졌습니다. 전문가들은 AI가 인간의 인지와 현실을 어떻게 재설계할 것인지, 그리고 복잡한 모델을 사용자가 어떻게 신뢰하고 통제할 수 있을지에 대한 실천적인 방법론을 제시했습니다. 결론적으로 미래의 AI는 독립적인 자동화 도구가 아니라, 인간과 상호작용하며 함께 성장하고 사회적 맥락 안에서 투명하게 소통하는 협력적 지능으로 진화해야 함을 강조했습니다.
리얼리티 디자인: 인터페이스를 넘어 현실을 설계하는 AI
- HCI(인간-컴퓨터 상호작용) 연구의 범위를 단순한 화면 속 인터페이스에서 인간의 삶이 이루어지는 '현실 자체'로 확장해야 한다는 '리얼리티 디자인' 개념이 제시되었습니다.
- AI와 센서, XR 기술을 결합하여 인간의 기억을 기록 및 재구성하거나, 특정 음성을 선택적으로 청취하고 동작을 슬로 모션으로 지각하는 등 인간의 감각과 인지 능력을 물리적으로 증강하는 연구 사례들이 소개되었습니다.
- 다만, 기술이 인간의 사고와 학습 의지를 약화시켜 '인지적 퇴화'를 초래할 수 있다는 점이 경고되었으며, 기술과 인간이 서로 영향을 주고받는 순환적 관계임을 고려한 설계가 필요합니다.
인간 중심의 AI 투명성: 사회기술적 간극 해소
- 기존의 기술 중심적 설명 가능성(XAI)에서 벗어나, 사용자가 실제 맥락에서 이해하고 신뢰할 수 있는 '사회기술적(socio-technical)' 관점의 투명성 확보가 강조되었습니다.
- 투명성을 구현하기 위한 구체적 방법론으로 확정적이지 않은 결과를 명확히 전달하는 '불확실성 커뮤니케이션', 조건 변화에 따른 결과 차이를 보여주는 '반사실적 설명', 사용자가 피드백을 통해 모델을 조정하는 '상호작용 기반 투명성'이 제시되었습니다.
- LLM 시대의 투명성은 단순한 정보 공개를 넘어 모델 카드(Model Card)를 통한 데이터/개발 배경 공유, 안전성 및 리스크 평가 결과 포함, 그리고 사용자가 직접 통제권을 가질 수 있는 수단을 함께 제공하는 방향으로 나아가야 합니다.
인터랙티브 머신러닝: 사용자와 함께 성장하는 모델
- AI를 고정된 데이터를 학습하는 정적 도구로 보지 않고, 사용자가 모델의 오류를 수정하고 그 피드백이 다시 학습에 반영되는 '인간 참여형(Human-in-the-loop)' 루프의 중요성이 재조명되었습니다.
- 이 방식은 교육 도구에서 학생들이 데이터를 조작하며 학습 원리를 깨우치게 하거나, 연구 현장에서 대규모 데이터를 분석할 때 인간의 직관을 결합하는 등 다양한 실무 분야에서 인용되고 있습니다.
- 좋은 AI의 기준은 독립적인 성능 수치보다 사용자와의 지속적인 상호작용을 통해 얼마나 유연하게 적응하고 발전할 수 있는지에 달려 있습니다.
전문가 협업 시스템: 상담 분석을 돕는 AI
- 아동 상담 분석과 같이 고도의 전문성이 필요한 영역에서 AI가 상담사의 녹취 및 전사 작업을 보조하고, 상담사가 AI의 결과물을 손쉽게 편집 및 교정할 수 있는 협업 시스템 연구가 발표되었습니다.
- 이는 AI가 인간의 일자리를 대체하는 것이 아니라, 번거로운 작업을 효율화함으로써 전문가가 본연의 가치 있는 업무에 집중할 수 있도록 돕는 실질적인 협업 모델의 예시를 보여줍니다.
실용적 제언 AI 시스템을 설계할 때 단순히 정확도를 높이는 데 그치지 말고, 사용자가 시스템의 판단 근거를 납득할 수 있는 '설명 수단'과 잘못된 결과를 바로잡을 수 있는 '통제 수단'을 반드시 세트로 설계해야 합니다. 특히 고위험군 서비스를 개발할 때는 모델의 불확실성을 시각적·언어적으로 친절하게 전달하여 사용자가 적절한 수준의 신뢰를 형성하도록 유도하는 것이 중요합니다.