동적 사용자 분할을 활용한 새로운 A/B 테스트 시스템을 소개합니다 (새 탭에서 열림)
동적 유저 세분화(Dynamic User Segmentation) 기술을 도입한 새로운 A/B 테스트 시스템은 사용자 ID 기반의 단순 무작위 배분을 넘어 특정 속성과 행동 패턴을 가진 정교한 사용자 그룹을 대상으로 실험을 수행할 수 있게 합니다. 이 시스템은 타겟팅 엔진과 테스트 할당 로직을 분리하여 데이터 기반의 의사결정 범위를 개인화된 영역까지 확장하며, 서비스 품질 향상과 리소스 최적화라는 두 가지 목표를 동시에 달성합니다. 결과적으로 개발자와 마케터는 복잡한 사용자 시나리오에 대해 더욱 정확하고 신뢰할 수 있는 실험 데이터를 얻을 수 있습니다.
기존 A/B 테스트 방식과 고도화의 필요성
- 무작위 배분의 특징: 일반적인 시스템은 사용자 ID를 해싱하여 실험군과 대조군으로 무작위 할당하며, 구현이 쉽고 선택 편향(Selection Bias)을 줄일 수 있다는 장점이 있습니다.
- 타겟팅의 한계: 전체 사용자를 대상으로 하는 일반적인 테스트에는 적합하지만, '오사카에 거주하는 iOS 사용자'처럼 특정 조건을 충족하는 집단만을 대상으로 하는 정교한 실험에는 한계가 있습니다.
- 고도화된 시스템의 목적: 사용자 세그먼트를 동적으로 정의함으로써, 서비스의 특정 기능이 특정 사용자 층에게 미치는 영향을 정밀하게 측정하기 위해 도입되었습니다.
유저 세분화를 위한 타겟팅 시스템 아키텍처
- 데이터 파이프라인: HDFS에 저장된 사용자 정보(UserInfo), 모바일 정보(MobileInfo), 앱 활동(AppActivity) 등의 빅데이터를 Spark를 이용해 분석하고 처리합니다.
- 세그먼트 연산: Spark의 RDD 기능을 활용하여 합집합(Union), 교집합(Intersect), 차집합(Subtract) 등의 연산을 수행하며, 이를 통해 복잡한 사용자 조건을 유연하게 조합할 수 있습니다.
- 데이터 저장 및 조회: 처리된 결과는
{user_id}-{segment_id}형태의 키-값 쌍으로 Redis에 저장되어, 실시간 요청 시 매우 낮은 지연 시간으로 해당 사용자의 세그먼트 포함 여부를 확인합니다.
효율적인 실험 관리와 할당 프로세스
- 설정 관리(Central Dogma): 실험의 설정값은 오픈 소스 설정 저장소인 Central Dogma를 통해 관리되며, 이를 통해 코드 수정 없이 실시간으로 실험 설정을 변경하고 동기화할 수 있습니다.
- 할당 로직(Test Group Assigner): 클라이언트의 요청이 들어오면 할당기는 Central Dogma에서 실험 정보를 가져오고, Redis를 조회하여 사용자가 타겟 세그먼트에 속하는지 확인한 후 최종 실험군을 결정합니다.
- 로그 및 분석: 할당된 그룹 정보는 로그 스토어에 기록되어 사후 분석 및 대시보드 시각화의 기초 자료로 활용됩니다.
주요 활용 사례 및 향후 계획
- 콘텐츠 및 위치 추천: 특정 사용자 세그먼트에 대해 서로 다른 머신러닝(ML) 모델의 성능을 비교하여 최적의 추천 알고리즘을 선정합니다.
- 마케팅 및 온보딩: 구매 빈도가 낮은 '라이트 유저'에게만 할인 쿠폰 효과를 테스트하거나, '신규 가입자'에게만 온보딩 화면의 효과를 측정하여 불필요한 비용을 줄이고 효율을 높입니다.
- 플랫폼 확장성: 향후에는 LY Corporation 내의 다양한 서비스로 플랫폼을 확장하고, 실험 생성부터 결과 분석까지 한 곳에서 관리할 수 있는 통합 어드민 시스템을 구축할 계획입니다.
이 시스템은 실험 대상자를 정교하게 선별해야 하는 복잡한 서비스 환경에서 데이터의 신뢰도를 높이는 데 매우 효과적입니다. 특히 마케팅 비용 최적화나 신규 기능의 타겟 검증이 필요한 팀이라면, 단순 무작위 할당 방식보다는 유저 세그먼트 기반의 동적 타겟팅 시스템을 구축하거나 활용하는 것을 권장합니다.