신경 연결에 대한 새로운 조 (새 탭에서 열림)

구글 리서치와 오스트리아 과학기술연구소(ISTA)는 기존의 고가 전자 현미경 대신 일반적인 광학 현미경을 사용하여 뇌의 신경망 지도(커넥토믹스)를 정밀하게 구현하는 'LICONN' 기술을 개발했습니다. 이 방법은 특수한 하이드로젤을 이용해 뇌 조직을 물리적으로 확장함으로써 광학 현미경의 해상도 한계를 극복했으며, 전자 현미경 방식과 대등한 수준의 재구성 성능을 입증했습니다. 이를 통해 더 많은 연구자가 저렴한 비용으로 뇌의 구조와 분자 정보를 동시에 분석할 수 있는 길이 열렸습니다.

전자 현미경의 한계를 넘는 광학 현미경 기반 커넥토믹스

  • 신경세포 간의 정밀한 연결을 매핑하는 커넥토믹스는 그간 수백만 달러에 달하는 고가의 전자 현미경(EM) 장비와 고도의 숙련된 인력에 의존해 왔습니다.
  • LICONN(Light microscopy-based connectomics)은 생명과학 실험실에서 흔히 사용하는 광학 현미경을 활용하여 뇌 조직 내의 모든 뉴런과 그 연결을 포괄적으로 지도화합니다.
  • 이 기술은 전자 현미경 수준의 정밀도를 유지하면서도 장비 접근성을 획기적으로 높여, 대규모 예산을 보유한 기관뿐만 아니라 일반 연구실에서도 커넥토믹스 연구를 수행할 수 있게 합니다.

LICONN의 핵심: 조직 확장 기술과 단백질 라벨링

  • 광학 현미경의 낮은 해상도 문제를 해결하기 위해 '확장 현미경(Expansion Microscopy)' 기술을 적용하여 시료 자체를 물리적으로 부풀리는 방식을 채택했습니다.
  • 하이드로젤을 이용해 조직을 각 차원당 16배(부피 기준 약 4,000배) 확장함으로써, 빛의 회절 한계를 넘어 나노미터 단위의 미세 구조를 관찰할 수 있는 환경을 조성했습니다.
  • 모든 단백질을 화학적으로 라벨링하여 이미지 대비를 높였으며, 이를 통해 신경세포의 형태를 추적하고 시냅스와 같은 미세한 구조를 정확히 탐지합니다.

머신러닝을 활용한 신경망 재구성과 성능 검증

  • 구글의 고도화된 머신러닝 알고리즘과 이미지 분석 도구를 결합하여 약 100만 입방 마이크론(µm³) 부피의 생쥐 피질 조직을 자동 재구성하는 데 성공했습니다.
  • 생쥐 해마 조직 내 약 0.5미터에 달하는 신경 돌기(Neurite)를 추적한 결과, 기존 전자 현미경 방식과 비교해도 손색없는 정확도를 보여주었습니다.
  • 특히 여러 파장의 빛을 사용하는 광학 현미경의 장점을 활용해 단백질, 신경 전달 물질 등의 분자 정보와 신경망의 구조적 정보를 동시에 결합한 다각적 분석이 가능해졌습니다.

LICONN 기술은 뇌 지도를 제작하는 비용과 장벽을 크게 낮추는 동시에, 뇌의 구조와 기능을 분자 수준에서 연결하는 새로운 연구 기회를 제공합니다. 이는 향후 인지, 지각, 행동이 뇌에서 어떻게 발생하는지 이해하는 데 중요한 도구가 될 것입니다.