LY Corporation의 AI 기술의 현재, Tech-Verse 2025 후기 (새 탭에서 열림)

Tech-Verse 2025는 LY Corporation이 LINE과 Yahoo Japan의 통합 이후 선보인 AI 전략의 핵심과 실무적인 기술 성과를 집약적으로 보여준 행사였습니다. 이번 컨퍼런스에서는 단순한 기술 트렌드 나열을 넘어, RAG와 MCP 등 최신 AI 기술을 실제 서비스와 개발 환경에 적용하며 겪은 시행착오와 구체적인 해결 방안이 중점적으로 다뤄졌습니다. 특히 AI가 개발 프로세스 전체에 스며들어 생산성과 품질을 동시에 확보하는 기술적 내공이 강조되었습니다.

AI 기반 개발 생산성 혁신: Ark Developer

  • 사내 개발자들을 위해 구축된 'Ark Developer'는 RAG 기반의 코드 어시스턴트로, 코드 자동 완성, 리뷰, 보안 확인, 테스트 코드 작성을 지원합니다.
  • 사내 문서를 스트리밍 형태로 실시간 참조하여 코드의 맥락에 맞는 정확한 도움을 제공하며, GitHub와 연동되어 PR 생성까지 자동화된 워크플로우를 보여줍니다.
  • 단순히 코드 베이스를 텍스트 뭉치로 취급하는 대신, 디렉토리 구조를 그래프 형태로 분석(Graph Analysis)하여 연관 코드를 더욱 정밀하게 참조하는 기술적 차별점을 갖췄습니다.
  • 실제 현업 개발자들 사이에서 기존의 범용 AI 도구보다 체감 성능이 뛰어나다는 평가를 받으며 개발 사이클 전반에 깊숙이 통합되어 활용되고 있습니다.

생성형 AI의 품질 측정과 정교한 평가 체계

  • 주관성이 강한 이미지 생성 기술의 품질을 관리하기 위해 분포 기반의 FID(Fréchet Inception Distance), IS(Inception Score)와 같은 전통적 지표를 넘어 다각적인 평가 모델을 도입했습니다.
  • 미적 기준을 측정하는 Aesthetic Score, LLM 기반의 CLIP-IQA 및 Q-Align, 그리고 비디오-언어 모델을 활용한 VQA(Visual Question Answering) 방식 등 정밀한 정량 평가를 수행합니다.
  • 이미지 번역 및 인페인팅 서비스에서는 단순한 텍스트 변환을 넘어 원래의 레이아웃과 구조까지 자연스럽게 복원해야 하는 복합적인 과제를 생성형 AI로 해결하고 있습니다.
  • 생성형 AI 기술의 완성도는 단순히 모델을 구현하는 것에 그치지 않고, '어떻게 정답이 없는 결과를 객관적으로 검증하고 개선할 것인가'에 달려 있음을 시사합니다.

실무형 AI 도입을 위한 통찰 이번 컨퍼런스는 LLM과 에이전트 기술이 실험실을 벗어나 실제 서비스의 품질을 결정짓는 성숙기에 접어들었음을 보여줍니다. 특히 생성형 AI 결과물에 대한 정량적 평가 지표를 수립하고, 코드 베이스를 그래프 구조로 분석하는 등의 구체적인 접근법은 AI 서비스를 고도화하려는 실무자들에게 매우 유용한 벤치마킹 사례가 될 것입니다. 단순한 기술 도입보다는 우리 조직의 데이터 구조와 서비스 특성에 맞는 '평가와 검증 체계'를 먼저 고민하는 것이 품질 높은 AI 서비스를 만드는 핵심입니다.