당근페이 AI Powered FDS로 가는 여정: 룰엔진구축부터 LLM 적용까지 | by HyunwooKim | 당근 테크 블로그 | Nov, 2025 | Medium (새 탭에서 열림)
당근페이는 급변하는 이상거래 패턴에 유연하게 대응하기 위해 룰엔진 중심의 FDS를 구축하고, 최근에는 LLM을 결합하여 탐지 정교화와 모니터링 효율성을 극대화하고 있습니다. 초기 룰엔진은 조건, 규칙, 정책의 계층 구조로 설계되어 실시간 탐지와 제재를 가능하게 했으며, 여기에 LLM 기반의 맥락 분석을 더해 검토 시간을 단축하고 판단의 일관성을 확보했습니다. 금융 보안 규제를 준수하면서도 최신 AI 모델을 실무에 적용해 사용자 자산을 보호하는 선도적인 FDS 운영 사례를 제시합니다.
유연한 탐지를 위한 룰엔진의 구조
- 룰엔진은 조건(빌딩 블록), 규칙(조건의 조합), 정책(규칙의 묶음)의 3단계 계층 구조로 설계되어 레고 블록처럼 탐지 로직을 조립할 수 있습니다.
- '가입 후 N일 이내', '송금 횟수 N건 이상'과 같은 개별 임계값을 자유롭게 변경하며 새로운 사기 패턴에 즉각적으로 대응할 수 있는 환경을 마련했습니다.
- 이벤트 유입 경로는 즉시 차단이 필요한 '동기 API'와 대량의 이벤트를 실시간으로 분석하는 '비동기 스트림'으로 분리하여 처리 효율을 높였습니다.
룰엔진 기반의 위험 평가 및 사후 처리
- 유입된 모든 거래 이벤트는 설정된 정책과 규칙에 따라 위험 평가를 거치며, 그 결과에 따라 LLM 평가, 고객 서비스팀 알람, 유저 제재 등의 후속 조치가 자동 수행됩니다.
- 시스템 도입 후 실시간으로 규칙을 추가하거나 변경하며 사기 트렌드를 빠르게 반영한 결과, 금융 및 수사기관으로부터의 사기 관련 정보 요청 건수가 유의미하게 감소했습니다.
- 탐지 로직의 유연화는 단순 차단을 넘어 시스템 전반의 유저 상태 동기화까지 통합적으로 관리할 수 있는 기반이 되었습니다.
LLM 도입을 통한 지능형 FDS로의 진화
- 기존의 수동 검토 방식은 건당 5~20분이 소요되고 담당자마다 판단 결과가 달라질 수 있는 한계가 있어, 이를 해결하기 위해 LLM을 통한 맥락 분석 기능을 도입했습니다.
- 전자금융업의 망분리 규제 문제를 해결하기 위해 '혁신금융서비스' 지정을 받았으며, AWS Bedrock의 Claude 3.5 Sonnet 모델을 활용해 보안과 성능을 모두 잡았습니다.
- BigQuery의 사기 이력을 Redis에 캐싱하고, 이를 구조화된 프롬프트(XML 태그 및 JSON 형식)에 결합하여 LLM이 사기 여부와 그 근거를 일관되게 평가하도록 설계했습니다.
효율적인 FDS 운영을 위해서는 룰 기반의 명확한 통제와 AI 기반의 유연한 맥락 분석이 조화를 이루어야 합니다. 특히 LLM을 실무에 적용할 때는 규제 준수를 위한 기술적/행정적 준비와 함께, AI가 정교한 판단을 내릴 수 있도록 단계별로 명시적이고 구조화된 프롬프트를 설계하는 과정이 무엇보다 중요합니다.