AI와 함께하는 프로젝트 자동화 : 더 빠르고, 더 스마트하게 (새 탭에서 열림)
네이버 엔지니어링 데이에서 발표된 이 내용은 로컬 LLM인 Ollama와 오픈소스 mcp-agent를 활용하여 프로젝트 자동화의 수준을 한 단계 높인 실무 사례를 다룹니다. 빌드 실패 분석부터 크래시 로그 요약, Slack 알림까지의 과정을 AI가 스스로 판단하고 수행하는 '협력자'로서의 모델을 제시하며, 이를 통해 개발자가 반복적인 모니터링 업무에서 벗어나 고차원적인 문제 해결에 집중할 수 있음을 보여줍니다.
로컬 기반 LLM 및 에이전트 활용 아키텍처
- Ollama를 활용하여 로컬 환경에 LLM을 구축함으로써 사내 보안 문제를 해결하고 데이터 유출 걱정 없이 분석 환경을 조성합니다.
- 오픈소스인 mcp-agent(Model Context Protocol)를 도입하여 AI 모델이 단순한 텍스트 생성을 넘어 외부 도구 및 데이터와 실시간으로 상호작용하도록 설계합니다.
- 단순 스크립트 기반 자동화와 달리, AI 에이전트가 상황을 인지하고 적절한 도구를 선택해 작업을 수행하는 유연한 워크플로우를 구현합니다.
지능형 빌드 실패 분석 및 크래시 모니터링
- 빌드 과정에서 발생하는 방대한 양의 에러 로그를 AI가 즉시 분석하여 실패의 근본 원인을 파악하고 요약합니다.
- 앱 실행 중 발생하는 크래시 로그를 실시간으로 모니터링하고, 코드 변경 이력 등을 대조하여 해당 문제를 해결하기에 가장 적합한 담당자(Assignee)를 자동으로 매칭합니다.
- 비정형 데이터인 로그 메시지를 의미론적으로 해석함으로써 기존 키워드 매칭 방식의 한계를 극복합니다.
Slack 연동을 통한 자동화된 리포팅 체계
- AI가 분석한 빌드 결과와 크래시 요약 내용을 Slack API를 통해 개발 팀 채널에 실시간으로 공유합니다.
- 리포트에는 단순히 에러 메시지만 전달하는 것이 아니라, AI가 제안하는 해결 방안과 우선순위 등을 포함하여 팀의 의사결정 속도를 높입니다.
- Slack 내에서 LLM과 대화하며 추가적인 로그 분석이나 세부 사항을 질의할 수 있는 대화형 자동화 환경을 제공합니다.
AI 자동화 도입 시 고려사항 및 한계
- LLM과 MCP의 조합이 강력하지만 모든 문제를 해결하는 만능 도구는 아니며, 결과값의 할루시네이션(환각 현상)에 대한 검증 프로세스가 병행되어야 합니다.
- 자동화가 복잡해질수록 AI가 도구를 잘못 선택하거나 잘못된 분석을 내놓을 가능성이 있으므로, 단계적인 도입과 신뢰도 테스트가 필수적입니다.
실용적인 제언 로컬 LLM을 활용한 자동화는 보안이 중요한 사내 프로젝트에서 비정형 데이터 분석 업무를 획기적으로 줄여줍니다. 특히 MCP와 같은 최신 프로토콜을 적극적으로 활용하여 LLM이 실제 개발 도구들과 긴밀하게 연결될 수 있도록 설계하는 것이 성공적인 AI 자동화 도입의 핵심입니다.