ai-literacy

2 개의 포스트

사내 AI 리터러시를 향상하기 위한 AI Campus Day를 개최했습니다 (새 탭에서 열림)

LY Corporation은 전 직군의 AI 리터러시를 높이고 실무 적용을 독려하기 위해 사내 실습 행사 'AI Campus Day'를 개최했습니다. 외부 강사 대신 사내 전문가인 'AI 멘토'를 활용하고 실습 중심의 핸즈온 세션을 구성함으로써, 보안 가이드라인과 사내 업무 환경에 최적화된 실질적인 AI 활용 노하우를 성공적으로 전파했습니다. 이번 행사는 단순한 교육을 넘어 축제 형태의 운영 방식을 도입하여 임직원들이 자발적으로 AI 기술을 탐색하고 업무 생산성을 높이는 계기를 마련했습니다. **실무 역량 강화를 위한 수준별 핸즈온 세션** * **직군별 맞춤 트랙 운영:** 'Common', 'Creative', 'Engineering'의 3개 트랙으로 나누어, 기초 프롬프팅부터 MCP(Model Context Protocol) 서버 구축과 같은 심화 주제까지 총 10개의 세션을 제공했습니다. * **단계별 난이도 설계:** 참가자의 AI 활용 수준에 맞춰 3단계 레벨을 설정하여, 비개발 직군부터 엔지니어까지 누구나 자신의 수준에 맞는 학습이 가능하도록 했습니다. * **철저한 실습 지원 체계:** 흐름을 놓치지 않도록 상세한 '세션 가이드'를 제작 배포하고, 세션마다 2~3명의 조교(총 26명)를 배치하여 현장에서 발생하는 기술적 문제를 즉각 해결했습니다. * **Slack 기반의 소통:** 각 세션별 채널을 통해 실습 결과물을 실시간으로 공유하고 질의응답을 진행하여 참여도를 높였습니다. **사내 콘텍스트를 반영한 AI 멘토링** * **내부 전문가 활용:** 외부 강사 대신 사내에서 이미 AI를 적극적으로 활용 중인 동료 10명을 멘토로 선발하여 현장감 있는 지식을 공유했습니다. * **최적화된 도구 활용:** ChatGPT Enterprise, Gemini, Claude Code 등 사내에서 허용된 도구와 보안 수칙을 100% 반영하여, 배운 내용을 즉시 업무에 적용할 수 있는 환경을 구축했습니다. * **체계적인 콘텐츠 검토:** 운영진은 멘토 가이드를 제공하고, '주제 검토 - 최종 자료 리뷰 - 리허설'로 이어지는 다단계 프로세스를 통해 교육 콘텐츠의 완성도를 확보했습니다. **자발적 참여를 유도하는 축제형 운영** * **캠퍼스 테마 도입:** 수강 신청, 등교, 스탬프 랠리 등 대학교 캠퍼스 컨셉을 활용하여 학습에 대한 심리적 장벽을 낮추고 즐거운 분위기를 조성했습니다. * **몰입형 이벤트 부스:** Gemini를 활용한 AI 포토존, 자체 개발 AI 업무 지원 솔루션 체험, AI 에이전트 콘테스트 홍보 등 다채로운 부스를 운영하여 AI의 효용성을 직접 경험하게 했습니다. * **리더십의 전폭적 지지:** 경영진의 축전 영상을 통해 '업무 대신 AI와 함께 노는 하루'라는 메시지를 전달함으로써, 임직원들이 심리적 부담 없이 행사에 몰입할 수 있는 환경을 만들었습니다. 성공적인 사내 AI 전환(AX)을 위해서는 단순한 도구 보급을 넘어, 사내 보안 가이드와 업무 맥락을 정확히 이해하는 내부 전문가 중심의 실습 교육이 필수적입니다. AI Campus Day와 같이 학습을 '숙제'가 아닌 '축제'로 인식하게 만드는 운영 전략은 구성원들의 자발적인 기술 수용도를 높이는 데 매우 효과적인 접근 방식이 될 것입니다.

[AI_TOP_100] 문제 출제 후기 – 기술이 아닌, 사람을 묻다. - tech.kakao.com (새 탭에서 열림)

AI 기술이 비약적으로 발전하는 시대에 도구를 다루는 인간의 실제 문제 해결 역량을 측정하기 위해 ‘AI TOP 100’ 경진대회가 기획되었습니다. 단순히 AI를 사용하는 수준을 넘어, 인간과 AI의 긴밀한 협업 과정을 통해 복잡한 현실 문제를 해결하고 최적의 의사결정을 내리는 ‘문제 해결자’를 선별하는 데 초점을 맞추었습니다. 결과물뿐만 아니라 AI의 한계를 인간의 통찰로 보완해 나가는 '과정' 자체를 핵심 평가 지표로 삼은 것이 이번 대회의 결론입니다. **AI와 인간의 협업 루프(Human-in-the-loop) 설계** * 단순히 문제를 복사하여 붙여넣는 방식으로는 해결할 수 없도록, 사람의 분석과 AI의 실행, 그리고 다시 사람의 검증이 순환되는 구조를 지향했습니다. * 사람은 직관적으로 파악하지만 AI는 분석하기 어려운 데이터 구조(식단표, 복잡한 표의 행/열 관계 등)를 제공하여 인간의 사전 가이드가 성능을 좌우하게 설계했습니다. * 이미지 생성과 피드백 분석, 프롬프트 개선 과정을 에이전트에게 위임하여 자동화 파이프라인을 구축하는 등 고도화된 협업 능력을 측정했습니다. **'딸깍' 방지를 위한 입체적인 난이도 설계** * 최신 AI 모델이 단 한 번의 프롬프트(One-shot)로 정답을 맞히지 못하도록 의도적인 기술적 제약과 논리적 미로를 문제 속에 배치했습니다. * '낮은 진입 장벽과 높은 천장' 원칙에 따라, 초보자도 쉽게 접근할 수 있는 시작 문항부터 깊은 통찰이 필요한 킬러 문항까지 '난이도 사다리' 구조를 도입했습니다. * 특정 프레임워크에 국한되지 않고 출제자가 예상치 못한 창의적인 방식으로도 문제를 해결할 수 있는 열린 구조를 유지했습니다. **현실의 복잡성을 반영한 4가지 문제 패턴** * **분석 및 정의(Insight):** 정답이 없는 복합 데이터 속에서 유의미한 문제나 기회를 스스로 발견하는 역량을 평가합니다. * **구현 및 자동화(Action):** 정의된 문제를 해결하기 위해 AI 솔루션을 실제 작동하는 코드나 워크플로로 구현하는 능력을 측정합니다. * **전략 및 창의(Persuasion):** 기술적 솔루션을 비기술 이해관계자에게 설득력 있게 전달하기 위한 논리와 창의적 콘텐츠 생성 능력을 확인합니다. * **최적화 및 의사결정(Decision):** 제약 조건 하에서 목표를 최대화하는 최적의 의사결정 시뮬레이션을 수행합니다. **엄격한 검증을 거친 문제 고도화 파이프라인** * 아이디어 단계부터 최종 확정까지 4단계의 파이프라인을 구축하고, 출제위원 내부 테스트 및 알파·베타 테스트를 통해 문제의 신뢰도를 검증했습니다. * AI 모델이 매일 업데이트되어 어제의 난제가 오늘의 쉬운 문제가 되는 환경에 대응하기 위해 지속적인 실증 테스트를 반복했습니다. * 문제의 겉보기 난이도가 아니라 실제 해결에 필요한 노력 비용을 기준으로 점수를 재조정하는 '캘리브레이션' 과정을 거쳐 변별력을 확보했습니다. AI 시대의 진정한 경쟁력은 도구의 기능을 단순히 암기하는 것이 아니라, AI의 한계를 명확히 이해하고 이를 인간의 기획력으로 보완하여 실질적인 가치를 만들어내는 데 있습니다. 이번 출제 후기는 기술보다 '그 기술을 다루는 사람'의 사고방식이 더 중요하다는 점을 강조하며, 앞으로의 AI 리터러시 교육과 평가가 나아가야 할 방향을 제시합니다.