ai-security

1 개의 포스트

AI 제품 개발 중 마주칠 수 있는 보안 위협 사례와 대책 방안 (새 탭에서 열림)

AI 제품 개발은 생산성을 비약적으로 높여주지만, 환각 현상이나 프롬프트 주입과 같은 새로운 형태의 보안 위협을 동반합니다. 이러한 리스크는 단순히 오답을 제공하는 수준을 넘어 악성코드 설치, 원격 코드 실행(RCE), 민감 정보 유출로 이어질 수 있어 기존과는 다른 다각도의 방어 전략이 필요합니다. LY Corporation은 실제 사례 분석을 통해 AI 모델과 외부 도구 간의 접점을 보호하고 보안 검토를 자동화하는 등의 대응 방안을 구축하고 있습니다. ## 슬랍스쿼팅(Slopsquatting)과 패키지 오인 * AI가 존재하지 않는 소프트웨어 패키지 이름을 마치 실제인 것처럼 제안하는 '환각(Hallucination)' 현상을 악용한 공격입니다. * 예를 들어, AI가 `huggingface_hub[cli]` 대신 `huggingface-cli`라는 잘못된 패키지 설치를 권장할 때, 공격자가 미리 해당 이름으로 악성 패키지를 등록해 두면 사용자가 이를 설치하게 됩니다. * 이를 방지하기 위해 AI가 생성한 코드나 설치 지침을 실행하기 전 반드시 공식 문서와 대조하여 검증하는 절차가 필수적입니다. ## 프롬프트 주입을 통한 원격 코드 실행(RCE) * Vanna AI 사례(CVE-2024-5565)와 같이 자연어를 SQL이나 파이썬 코드로 변환하여 직접 실행하는 서비스에서 주로 발생합니다. * 사용자가 입력창에 악의적인 명령을 주입하여 애플리케이션 권한 내에서 임의의 시스템 명령어를 실행하도록 유도할 수 있습니다. * LLM을 전적으로 신뢰하여 코드를 실행하게 두지 말고, 사용자 입력을 엄격히 검증(Sanitize)하며 데이터 생성 용도로만 제한적으로 활용해야 합니다. ## 오피스 AI에서의 간접 프롬프트 주입 * 이메일이나 문서 본문에 숨겨진 악성 지시사항을 AI가 읽고 실행하게 만드는 '간접 주입' 방식의 위협입니다. * 가령, 피싱 사이트로 유도를 하거나 비밀번호 변경을 종용하는 문구가 포함된 이메일을 AI가 요약하는 과정에서 사용자를 속이는 스크립트를 수행하게 될 수 있습니다. * 입력 데이터뿐만 아니라 AI가 내놓는 출력물에 대해서도 가드레일(Guardrails)을 적용하여 이상 징후를 탐지하는 이중 방어 체계가 필요합니다. ## 코딩 에이전트의 권한 남용 및 데이터 노출 * GitHub MCP(Model Context Protocol)와 같이 자동화된 코딩 에이전트가 공개 저장소와 비공개 저장소에 동시에 접근할 때 발생합니다. * 공개 저장소의 이슈나 PR에 포함된 악성 명령어가 에이전트를 통해 실행되면, 에이전트의 권한을 이용해 비공개 저장소에 있는 급여 정보나 개인정보를 외부로 유출할 수 있습니다. * 에이전트가 접근 가능한 데이터 범위를 최소화하고, 작업 단위별로 권한을 분리하는 보안 디자인이 중요합니다. ## 임베딩 인버전(Embedding Inversion)을 통한 정보 복원 * 텍스트 데이터를 수치화한 벡터 임베딩 값으로부터 원본 텍스트를 역으로 추론해내는 공격 기법입니다. * 임베딩 데이터 자체가 유출될 경우, 비식별화되었다고 판단했던 민감한 정보가 다시 복원되어 프라이버시 침해로 이어질 수 있습니다. * 벡터 데이터베이스에 대한 접근 제어를 강화하고 임베딩 데이터의 보안 수준을 원본 데이터와 동일하게 관리해야 합니다. AI 프로덕트의 안전성을 확보하기 위해서는 기획 단계에서의 보안 디자인 리뷰는 물론, 위협 모델링 자동화 도구인 'ConA'나 소스 코드 취약점 분석 자동화 도구인 'LAVA'와 같은 기술적 솔루션을 적극적으로 도입하여 보안 프로세스를 내재화하는 것이 권장됩니다.