central-dogma

2 개의 포스트

동적 사용자 분할을 활용한 새로운 A/B 테스트 시스템을 소개합니다 (새 탭에서 열림)

동적 유저 세분화(Dynamic User Segmentation) 기술을 도입한 새로운 A/B 테스트 시스템은 사용자 ID 기반의 단순 무작위 배분을 넘어 특정 속성과 행동 패턴을 가진 정교한 사용자 그룹을 대상으로 실험을 수행할 수 있게 합니다. 이 시스템은 타겟팅 엔진과 테스트 할당 로직을 분리하여 데이터 기반의 의사결정 범위를 개인화된 영역까지 확장하며, 서비스 품질 향상과 리소스 최적화라는 두 가지 목표를 동시에 달성합니다. 결과적으로 개발자와 마케터는 복잡한 사용자 시나리오에 대해 더욱 정확하고 신뢰할 수 있는 실험 데이터를 얻을 수 있습니다. ### 기존 A/B 테스트 방식과 고도화의 필요성 * **무작위 배분의 특징**: 일반적인 시스템은 사용자 ID를 해싱하여 실험군과 대조군으로 무작위 할당하며, 구현이 쉽고 선택 편향(Selection Bias)을 줄일 수 있다는 장점이 있습니다. * **타겟팅의 한계**: 전체 사용자를 대상으로 하는 일반적인 테스트에는 적합하지만, '오사카에 거주하는 iOS 사용자'처럼 특정 조건을 충족하는 집단만을 대상으로 하는 정교한 실험에는 한계가 있습니다. * **고도화된 시스템의 목적**: 사용자 세그먼트를 동적으로 정의함으로써, 서비스의 특정 기능이 특정 사용자 층에게 미치는 영향을 정밀하게 측정하기 위해 도입되었습니다. ### 유저 세분화를 위한 타겟팅 시스템 아키텍처 * **데이터 파이프라인**: HDFS에 저장된 사용자 정보(UserInfo), 모바일 정보(MobileInfo), 앱 활동(AppActivity) 등의 빅데이터를 Spark를 이용해 분석하고 처리합니다. * **세그먼트 연산**: Spark의 RDD 기능을 활용하여 합집합(Union), 교집합(Intersect), 차집합(Subtract) 등의 연산을 수행하며, 이를 통해 복잡한 사용자 조건을 유연하게 조합할 수 있습니다. * **데이터 저장 및 조회**: 처리된 결과는 `{user_id}-{segment_id}` 형태의 키-값 쌍으로 Redis에 저장되어, 실시간 요청 시 매우 낮은 지연 시간으로 해당 사용자의 세그먼트 포함 여부를 확인합니다. ### 효율적인 실험 관리와 할당 프로세스 * **설정 관리(Central Dogma)**: 실험의 설정값은 오픈 소스 설정 저장소인 Central Dogma를 통해 관리되며, 이를 통해 코드 수정 없이 실시간으로 실험 설정을 변경하고 동기화할 수 있습니다. * **할당 로직(Test Group Assigner)**: 클라이언트의 요청이 들어오면 할당기는 Central Dogma에서 실험 정보를 가져오고, Redis를 조회하여 사용자가 타겟 세그먼트에 속하는지 확인한 후 최종 실험군을 결정합니다. * **로그 및 분석**: 할당된 그룹 정보는 로그 스토어에 기록되어 사후 분석 및 대시보드 시각화의 기초 자료로 활용됩니다. ### 주요 활용 사례 및 향후 계획 * **콘텐츠 및 위치 추천**: 특정 사용자 세그먼트에 대해 서로 다른 머신러닝(ML) 모델의 성능을 비교하여 최적의 추천 알고리즘을 선정합니다. * **마케팅 및 온보딩**: 구매 빈도가 낮은 '라이트 유저'에게만 할인 쿠폰 효과를 테스트하거나, '신규 가입자'에게만 온보딩 화면의 효과를 측정하여 불필요한 비용을 줄이고 효율을 높입니다. * **플랫폼 확장성**: 향후에는 LY Corporation 내의 다양한 서비스로 플랫폼을 확장하고, 실험 생성부터 결과 분석까지 한 곳에서 관리할 수 있는 통합 어드민 시스템을 구축할 계획입니다. 이 시스템은 실험 대상자를 정교하게 선별해야 하는 복잡한 서비스 환경에서 데이터의 신뢰도를 높이는 데 매우 효과적입니다. 특히 마케팅 비용 최적화나 신규 기능의 타겟 검증이 필요한 팀이라면, 단순 무작위 할당 방식보다는 유저 세그먼트 기반의 동적 타겟팅 시스템을 구축하거나 활용하는 것을 권장합니다.

Central Dogma 컨트롤 플레인으로 LY Corporation의 수천 개 서비스를 연결하기 (새 탭에서 열림)

LY Corporation은 수천 개의 서비스를 효율적으로 연결하기 위해 Central Dogma를 활용한 통합 컨트롤 플레인(Control Plane)을 구축했습니다. 기존 레거시 시스템의 한계를 극복하고 xDS 표준 프로토콜을 도입함으로써, 물리 서버(PM), 가상 머신(VM), 쿠버네티스(K8s)를 아우르는 유연한 서비스 메시 환경을 구현했습니다. 이 시스템은 GitOps 기반의 설정 관리와 사이드카 없는(Sidecar-less) 아키텍처 지원을 통해 개발자 경험과 시스템 성능을 동시에 향상시키는 성과를 거두었습니다. ### 레거시 시스템의 한계와 새로운 요구사항 * **타이트한 결합과 동적 등록의 부재:** 기존 시스템은 특정 프로젝트 관리 도구(PMC)에 강하게 의존하고 있어 서비스의 동적인 변경사항을 즉각적으로 반영하기 어려웠습니다. * **상호 운용성 부족:** 자체 커스텀 메시지 스키마를 사용했기 때문에 Envoy나 다른 오픈소스 에코시스템과의 통합이 제한적이었습니다. * **제한적인 트래픽 제어:** 단순한 레지스트리 역할에 치중되어 있어 서킷 브레이커, 카나리 배포, 세밀한 로드 밸런싱 등 현대적인 컨트롤 플레인 기능을 수행하기에 부족함이 있었습니다. ### Central Dogma 컨트롤 플레인의 설계 및 구현 * **xDS 프로토콜 표준화:** 업계 표준인 xDS 프로토콜을 채택하여 Envoy 프록시 및 gRPC 클라이언트와 원활하게 통신할 수 있는 기반을 마련했습니다. * **GitOps 기반 관리:** Central Dogma의 Git 기반 저장소 특성을 활용해 설정 변경 사항을 버전 관리하고, 외부 Git 저장소(GitHub 등)와의 미러링을 통해 안전하게 설정을 배포합니다. * **하이브리드 인프라 지원:** PM, VM 환경의 레거시 데이터와 K8s의 엔드포인트를 모두 수용할 수 있도록 플러그인 구조를 설계하여 통합적인 엔드포인트 관리를 가능케 했습니다. * **고신뢰성 및 인증:** 다중 데이터센터 복제를 통해 가용성을 확보하고, 강력한 인증 시스템을 통합하여 보안성을 강화했습니다. ### 사이드카 없는 서비스 메시(Sidecar-less Service Mesh) * **리소스 및 복잡성 해결:** 일반적인 서비스 메시에서 발생하는 사이드카 프록시의 리소스 오버헤드와 운영 복잡성을 줄이기 위해 Proxyless 방식을 도입했습니다. * **라이브러리 수준의 통합:** gRPC 및 Armeria 라이브러리를 사용하여 애플리케이션이 컨트롤 플레인과 직접 xDS로 통신하게 함으로써 사이드카 없이도 서비스 메시의 이점을 누릴 수 있게 했습니다. * **효율적인 통신 제어:** 별도의 프록시 계층을 거치지 않고도 클라이언트 사이드 로드 밸런싱, 자동 재시도, 존 인식 라우팅(Zone-aware routing) 등을 직접 수행하여 성능을 최적화했습니다. 대규모 인프라에서 수천 개의 서비스를 연결해야 한다면, xDS와 같은 표준 프로토콜을 준수하면서도 기존에 검증된 구성 관리 도구(Central Dogma 등)를 컨트롤 플레인으로 확장하는 전략이 유효합니다. 특히 운영 효율성과 성능이 중요하다면 사이드카 없는 방식의 서비스 메시 도입을 적극적으로 고려해 볼 만합니다.