cloud-cost-optimization

2 개의 포스트

클라우드 서비스 사용량 관리를 통한 운영 비용 최적화. 쿠팡 엔지니어링 조직들의 클라우드 비용을 줄이기 위해 들인 노력과… | by 쿠팡 엔지니어링 | Coupang Engineering Blog | Medium (새 탭에서 열림)

쿠팡은 파이낸스 및 엔지니어링 팀의 긴밀한 협력을 통해 클라우드 온디맨드 비용을 최적화하고 재정적 책임을 강화하는 운영 모델을 구축했습니다. 'Hate Waste'라는 리더십 원칙에 따라 데이터 기반의 분석 도구를 도입하고 리소스 사용량을 효율적으로 통제함으로써, 서비스의 신뢰성을 유지하면서도 연간 수백만 달러 이상의 운영 비용을 절감하는 성과를 거두었습니다. **최적화 전담 팀 구성과 데이터 기반 의사결정 체계 구축** * 클라우드 인프라 엔지니어와 TPM(Technical Program Manager)을 중심으로 전담 프로젝트 팀을 구성하여 각 도메인 팀이 클라우드의 가변 비용 모델을 깊이 이해하도록 지원했습니다. * Amazon Athena를 통해 처리된 CloudWatch 데이터와 AWS CUR(Cost & Usage Reports)을 활용하여 실시간 비용 및 사용량을 분석할 수 있는 맞춤형 BI 대시보드를 개발했습니다. * 파이낸스 팀과의 협업을 통해 월별·분기별 예산 준수의 중요성을 강조하고, 각 팀이 주도적으로 리소스를 관리하는 엔지니어링 문화를 정착시켰습니다. **리소스 효율화와 기술적 최적화를 통한 실질적 비용 절감** * **사용량 절감(Use Less):** 비-프로덕션(Non-prod) 환경에서 리소스가 필요할 때만 자동으로 시작되도록 설정하여 해당 환경의 운영 비용을 약 25% 절감했습니다. * **비용 최적화(Pay Less):** 사용량 패턴을 분석하여 방치된 EC2 리소스를 수동으로 제거하고, 인스턴스를 최신 세대로 조정하여 성능 향상과 가용성 확보를 동시에 달성했습니다. * **기술적 수단 활용:** Amazon S3 스토리지 구조를 최적화하고, AWS Spot Instances 및 ARM 기반의 AWS Graviton 인스턴스를 도입하여 데이터 처리 및 저장 비용을 획기적으로 낮추었습니다. 클라우드 비용 관리는 단순히 지출을 줄이는 작업을 넘어, 인프라를 얼마나 더 똑똑하고 효율적으로 활용하느냐에 대한 기술적 성숙도를 의미합니다. 조직 전체가 비용에 대한 주인의식을 갖고 데이터를 바탕으로 리소스를 관리할 때, 비즈니스의 성장과 인프라의 지속 가능성을 동시에 확보할 수 있습니다.

비용 효율성을 위한 클라우드 (새 탭에서 열림)

쿠팡은 재무와 엔지니어링 팀 간의 긴밀한 협력을 통해 클라우드 지출을 최적화하고 재무적 책임감을 강화하는 전략적 로드맵을 실행했습니다. 이를 위해 구성된 중앙 관리 팀(Central team)은 '낭비 지양(Hate Waste)'이라는 기업 원칙 아래 데이터 기반의 분석 도구와 가변 비용 모델을 도입하여 전사적인 비용 관리 문화를 정착시켰습니다. 결과적으로 비즈니스 성장을 저해하지 않으면서도 리소스 사용 효율을 극대화하여 수백만 달러 규모의 온디맨드 비용을 절감하는 성과를 거두었습니다. ### 중앙 관리 팀 조직과 분석 체계 구축 * 인프라 엔지니어와 기술 프로그램 매니저(TPM)로 구성된 중앙 팀을 조직하여 각 도메인 팀이 클라우드 효율성을 스스로 관리할 수 있도록 지원했습니다. * Amazon CloudWatch, Amazon Athena, 그리고 AWS CUR(비용 및 사용 보고서) 데이터를 활용한 맞춤형 대시보드를 구축하여 실시간으로 비용을 모니터링하고 데이터에 기반한 의사결정을 내릴 수 있는 환경을 마련했습니다. * 재무 팀과의 파트너십을 통해 각 도메인 팀이 할당된 월간 및 분기별 예산을 준수하도록 관리하는 거버넌스 체계를 확립했습니다. ### 지출 감소 및 단가 최적화 전략 (Spend Less & Pay Less) * **지출 감소(Spend Less):** 비운영 환경(Non-production)에서 리소스가 필요할 때만 자동으로 실행되도록 자동화 프로세스를 도입하여, 해당 환경의 비용을 약 25% 절감했습니다. * **단가 최적화(Pay Less):** 사용 패턴 분석을 통해 사용되지 않거나 효율이 낮은 EC2 리소스를 수동으로 제거하고, 워크로드에 맞는 적정 사양으로 조정(Rightsizing)했습니다. * **인프라 현대화:** 기존 인스턴스를 최신 세대로 전환하고, x86 대비 가성비가 뛰어난 ARM 기반의 AWS Graviton 인스턴스 도입을 확대하여 처리 성능은 높이고 비용은 낮추었습니다. ### 기술적 세부 최적화 실행 * **데이터 처리 및 저장:** Amazon S3의 저장 구조를 최적화하고 스토리지 계층화(Tiering)를 적용하여 데이터 보관 비용을 효율화했습니다. * **빅데이터 워크로드:** EMR(Elastic MapReduce) 환경에서 Spot 인스턴스 활용도를 높여 데이터 분석 및 처리 비용을 획기적으로 줄였습니다. * **문화적 확산:** 엔지니어들이 클라우드 비용을 단순한 지출이 아닌 관리해야 할 리소스로 인식하도록 교육하고, 기술적 최적화가 비즈니스 가치로 이어지는 선순환 구조를 만들었습니다. 성공적인 클라우드 비용 최적화를 위해서는 단순히 리소스를 삭제하는 것을 넘어, 엔지니어링 팀과 재무 팀이 공통의 목표를 공유하는 것이 중요합니다. 특히 데이터 분석을 통해 가시성을 확보하고, Graviton 인스턴스나 Spot 인스턴스 같은 클라우드 고유의 가변 비용 모델을 적극적으로 활용할 것을 권장합니다.