dbt

2 개의 포스트

당근은 왜 User Activation을 전사 공통 데이터 레이어로 만들었을까? | by Juyeon Park | 당근 테크 블로그 | Jan, 2026 | Medium (새 탭에서 열림)

당근은 단순한 액티브 유저(Active User) 수치만으로는 파악하기 어려운 사용자 행동의 원인과 흐름을 분석하기 위해 전사 공통 데이터 레이어인 'Activation 레이어'를 구축했습니다. 이를 통해 사용자의 활성 상태와 상태 전이를 일관된 기준으로 정의함으로써 데이터 신뢰성을 확보하고, 팀 간 중복 계산으로 인한 비용과 운영 리소스를 대폭 절감했습니다. 결과적으로 데이터 분석 환경을 쿼리 중심에서 시스템 중심으로 격상시켜 전사적인 의사결정 속도와 정확도를 높였습니다. **단순 지표를 넘어선 User Activation의 중요성** * 단순한 액티브 유저 수는 '무슨 일이 일어났는지'는 보여주지만, '왜' 일어났는지에 대한 해답을 주지 못하므로 유저를 상태별로 쪼개어 보는 관점이 필요합니다. * **활성 상태**: 특정 시점에 유저가 신규(New), 유지(Retained), 복귀(Reactivated), 이탈(Inactive) 중 어떤 상태인지 분류합니다. * **상태 전이**: 기간의 흐름에 따라 유저가 어떤 경로로 이동하는지(예: 유지 → 이탈) 파악하여 활동성 수준에 따른 구체적인 액션을 가능하게 합니다. * 이전에는 팀마다 이 기준을 각자 계산하여 신뢰도가 낮고 운영 안정성이 떨어졌으나, 이를 공통 레이어로 통합하여 해결했습니다. **신뢰성 확보를 위한 기준 행동의 고정** * 단순한 UI 로그(클릭 등)가 아닌, 비즈니스적 의미를 담은 **Fact 모델**을 기준으로 Activation을 계산하도록 설계했습니다. * 로그 내 파라미터에 따라 의미가 달라지는 혼선을 방지하기 위해, 사전에 정제된 Fact 레이어를 입력값으로 사용합니다. * `<fact_name>_activation_<time_grain>`과 같은 엄격한 네이밍 컨벤션을 적용하여 모델 이름만으로도 어떤 행동과 주기(일/주/월)를 기준으로 하는지 누구나 쉽게 알 수 있게 했습니다. **증분 모델(Incremental Model)을 통한 비용 최적화** * 수천만 명의 사용자 데이터를 매일 전체 재처리하는 방식은 비용 소모가 크기 때문에, dbt의 증분 모델 방식을 도입했습니다. * **FirstLast 모델**: 각 유저별 최초/직전/최근 활동일을 별도로 관리하여 전체 이력을 매번 스캔하지 않도록 했습니다. * **Activation 모델**: 당일 활동 유저 정보와 FirstLast 모델을 결합하여 상태와 복귀 간격 등을 계산하고, 결과를 다시 FirstLast 모델에 업데이트하는 순환 구조로 데이터 스캔량을 최소화했습니다. * **Activation Status 모델**: 활동이 없는 유저를 포함한 전체 유저의 현재 상태(특히 이탈 기간)를 관리하여 분석 편의성을 높였습니다. **dbt 매크로를 활용한 생산성 극대화** * 다양한 행동(앱 방문, 게시글 작성 등)과 시간 단위(Daily, Weekly, Monthly)별로 수많은 모델을 직접 구현해야 하는 번거로움을 매크로로 해결했습니다. * 복잡한 상태 계산 로직을 dbt 매크로로 표준화하여, 새로운 Activation 모델이 필요할 때 설정값만 입력하면 자동으로 수십 개의 모델이 생성되도록 자동화했습니다. * 이를 통해 데이터 엔지니어의 반복 작업을 줄이고, 분석가들이 필요할 때 즉시 공통 레이어를 확장할 수 있는 환경을 만들었습니다. 데이터를 단순히 쿼리 결과물로 보는 단계를 넘어, 시스템화된 '인프라'로 구축할 때 비로소 전사적인 데이터 활용도가 극대화됩니다. 당근의 사례처럼 상태 전이와 같은 복잡한 로직을 공통 레이어로 추상화하고 자동화한다면, 분석 효율성을 높이는 동시에 데이터 기반의 의사결정 문화를 더욱 공고히 할 수 있습니다.

DBT, Airflow를 활용한 데이터 계보 중심 파이프라인 만들기 (새 탭에서 열림)

네이버웹툰은 기존 데이터 파이프라인에서 발생하던 복잡한 데이터 적재(Backfill) 작업과 높은 운영 비용 문제를 해결하기 위해 DBT와 Airflow를 결합한 'Flow.er' 시스템을 구축했습니다. Flow.er는 데이터 간의 의존성을 명확히 정의하는 데이터 계보(Lineage)를 중심으로 설계되어, 엔지니어가 데이터의 흐름을 온디맨드로 파악하고 관리할 수 있게 돕습니다. 이를 통해 데이터 품질을 높이는 동시에 여러 데이터 조직으로 확장 가능한 고도화된 데이터 플랫폼으로 발전하고 있습니다. **과거 파이프라인의 한계와 Flow.er의 탄생** * 과거에는 파이프라인 복구와 수동 백필 작업에 과도한 운영 리소스가 소모되어 업무 효율이 저하되는 문제가 있었습니다. * 데이터 간의 복잡한 연결 고리를 한눈에 파악하기 어려워 데이터 정합성을 유지하고 장애에 대응하는 데 한계가 존재했습니다. * 이러한 문제를 극복하기 위해 데이터 계보를 가시화하고 자동화된 운영이 가능한 'Flow.er' 서비스에 대한 PoC를 거쳐 실무에 도입했습니다. **DBT와 Airflow를 활용한 계보 중심 아키텍처** * **DBT의 역할**: SQL 기반의 데이터 모델링을 통해 데이터 변환 로직을 관리하며, 모델 간 의존성을 바탕으로 데이터 계보와 관련 문서(Documentation)를 자동 생성합니다. * **Airflow의 역할**: DBT로 정의된 모델들이 선후 관계에 맞춰 정확히 실행되도록 워크플로우를 오케스트레이션하고 스케줄링을 담당합니다. * **개발 생산성 향상**: 개인 인스턴스를 제공하여 개발자가 격리된 환경에서 모델을 테스트할 수 있게 하고, CI/CD 파이프라인을 통해 코드 변경 사항을 안전하게 배포합니다. **시스템 안정성 및 확장을 위한 컴포넌트** * **Playground & Tower**: 자유로운 데이터 실험을 위한 샌드박스 환경인 Playground와 파이프라인 상태를 실시간으로 감시하는 Tower를 통해 운영 가시성을 확보했습니다. * **Partition Checker**: 상위 데이터 소스의 파티션 생성 여부를 사전에 체크하여 데이터 누락을 방지하고 적재 정합성을 획기적으로 개선했습니다. * **Manager DAG System**: 수많은 데이터 모델과 DAG를 효율적으로 관리하기 위해 관리 전용 시스템을 개선하여 운영 편의성을 극대화했습니다. **Flow.er의 미래와 기술적 지향점** * **MCP(Model Context Protocol) 서버**: 데이터 모델의 컨텍스트를 외부 도구나 AI 에이전트가 이해할 수 있는 규격으로 제공하여 데이터 활용도를 높일 예정입니다. * **AI Agent 연동**: 단순한 파이프라인 운영을 넘어 AI가 데이터 계보를 분석하고 문제를 해결하거나 코드를 최적화하는 단계로의 발전을 준비하고 있습니다. 데이터 파이프라인의 복잡성으로 인해 백필과 운영에 고통받고 있다면, DBT를 활용해 계보를 명확히 정의하고 이를 Airflow와 유기적으로 연결하는 접근 방식이 필수적입니다. 데이터 계보 중심의 아키텍처는 단순한 자동화를 넘어 데이터 프로덕트의 신뢰성을 담보하는 가장 강력한 수단이 될 것입니다.