litert

2 개의 포스트

XR 블록스: AI + (새 탭에서 열림)

Google XR 팀이 공개한 **XR Blocks**는 인공지능(AI)과 확장 현실(XR) 기술의 결합을 가속화하기 위한 오픈 소스 프레임워크로, 몰입형 지능형 컴퓨팅 환경을 구축하는 데 따르는 기술적 장벽을 낮추기 위해 설계되었습니다. 기존의 XR 개발이 인지, 렌더링, 상호작용 시스템을 수동으로 통합해야 하는 고마찰 과정이었다면, XR Blocks는 이를 모듈화된 '플러그 앤 플레이' 방식으로 전환하여 창작자가 복잡한 하위 시스템 구현 대신 사용자 경험 설계에 집중할 수 있게 합니다. 이 프레임워크는 WebXR, three.js, LiteRT, Gemini 등 접근성 높은 기술을 기반으로 하며, 데스크톱 시뮬레이터와 Android XR 기기 모두에서 작동하는 범용성을 갖추고 있습니다. **창작자 중심의 설계 원칙** * **단순성과 가독성:** Python의 철학(Zen of Python)에서 영감을 받아, 개발자의 스크립트가 마치 고수준의 경험을 묘사하는 문장처럼 읽힐 수 있도록 깨끗하고 직관적인 추상화를 제공합니다. * **창작자 경험 우선:** 센서 데이터 융합이나 AI 모델 통합과 같은 복잡한 '하위 배관 작업'에 시간을 허비하지 않고, 지능적이고 인지적인 XR 애플리케이션의 핵심 로직 개발에만 몰입할 수 있는 환경을 조성합니다. * **실용적 유연성:** 기술의 빠른 변화에 대응하기 위해 완벽한 단일 체계를 지향하기보다, 모듈화되고 적응력 높은 아키텍처를 채택하여 다양한 기기와 환경에서 유연하게 작동하도록 했습니다. **리얼리티 모델과 추상화 계층** * **Script와 실행의 분리:** 상호작용의 내용(What)을 정의하는 'Script'와 이를 저수준에서 구현하는 방식(How)을 분리하여 시스템의 복잡도를 관리합니다. * **사용자 및 물리 세계 인지:** 손의 움직임, 시선(Gaze), 아바타와 같은 사용자 요소와 깊이 맵(Depth), 조명 추정, 객체 인식 등 물리적 환경 정보를 손쉽게 쿼리하고 활용할 수 있습니다. * **AI 및 지능형 에이전트 통합:** 가상 인터페이스(UI)뿐만 아니라 맥락을 이해하고 능동적으로 제안을 수행하는 'Sensible Agent'와 같은 AI 기능을 프레임워크 내에서 직접 구현할 수 있습니다. **실제 적용 사례 및 가치** * **XR 리얼리티 가속화:** 깊이 인식과 물리 기반 상호작용을 시뮬레이션 환경에서 프로토타이핑하고, 동일한 코드를 실제 XR 기기에 즉시 배포하여 개발 사이클을 단축할 수 있습니다. * **맞춤형 상호작용 설계:** 사용자 정의 제스처 모델을 데스크톱 시뮬레이터와 온디바이스 XR 환경에 원활하게 통합하여 독창적인 인터랙션을 실험할 수 있습니다. 이 프레임워크는 아이디어를 인터랙티브한 프로토타입으로 빠르게 전환하고자 하는 개발자와 연구자들에게 강력한 도구가 될 것입니다. 특히 웹 기반 기술을 활용하므로 높은 접근성을 제공하며, Android XR 생태계와의 호환성을 통해 차세대 AI+XR 애플리케이션 개발의 표준적인 출발점을 제시합니다.

Snapseed의 인터 (새 탭에서 열림)

Google은 Snapseed의 새로운 '개체 브러시(Object Brush)' 기능을 통해 모바일 기기에서도 전문가 수준의 정교한 이미지 선택 및 편집을 가능하게 하는 실시간 온디바이스 세분화(Segmentation) 기술을 도입했습니다. 이 기술은 사용자의 간단한 터치나 선 그리기만으로 20ms 이내에 대상을 정확히 감지하며, MediaPipe와 LiteRT의 GPU 가속을 활용해 지연 없는 상호작용을 제공합니다. 이를 통해 복잡한 마스킹 작업 없이도 인물, 동물, 하늘 등 특정 객체만을 직관적으로 분리하여 보정할 수 있습니다. **온디바이스 기반의 실시간 대화형 분할** - 대화형 세분화 모델(Interactive Segmenter)을 탑재하여 사용자가 이미지 위의 객체를 탭하거나 선을 그으면 즉시 해당 대상을 선택합니다. - MediaPipe 프레임워크와 LiteRT의 GPU 가속을 통해 모바일 기기에서 모든 프로세스를 처리하며, 20ms 미만의 초저지연 성능을 달성했습니다. - 전경 프롬프트(선택하려는 부분)와 배경 프롬프트(제외하려는 부분)를 자유롭게 추가하거나 제거하며 실시간으로 마스크 영역을 정교하게 수정할 수 있습니다. **교사-학생(Teacher-Student) 학습을 통한 모델 최적화** - 범용적인 객체 인식을 위해 350개 이상의 카테고리에서 수집한 3만 개의 고품질 마스크 데이터를 기반으로 '교사 모델(Interactive Segmenter: Teacher)'을 먼저 학습시켰습니다. - 교사 모델은 정확도는 높지만 모바일에서 구동하기에는 너무 크고 느리기 때문에, 이를 경량화된 '에지 모델(Interactive Segmenter: Edge)'로 지식 증류(Knowledge Distillation)하는 과정을 거쳤습니다. - 약 200만 장 이상의 대규모 데이터셋을 활용하여 교사 모델이 생성한 고정밀 마스크를 에지 모델이 학습하게 함으로써, 작은 크기임에도 높은 교차 분석(IOU) 성능을 유지하도록 설계했습니다. **사용자 행동을 모사한 프롬프트 생성 기술** - 실제 사용자가 객체를 선택하는 방식(스크리블, 탭, 박스 지정 등)을 학습 단계에서 시뮬레이션하여 모델의 반응성을 높였습니다. - 객체 내부에는 전경 프롬프트(Scribbles)를, 외부에는 배경 프롬프트를 무작위로 생성하여 모델이 사용자의 의도를 정확히 파악하도록 훈련했습니다. - 올가미(Lasso) 선택 방식을 지원하기 위해 객체 주위에 박스 프롬프트를 노출하는 학습 과정을 병행하여 다양한 편집 시나리오에 대응합니다. 이 기술은 강력한 AI 모델과 직관적인 UI를 결합하여 모바일 사진 편집의 제약 사항이었던 정밀 선택 문제를 해결했습니다. iOS용 Snapseed의 '수정(Adjust)' 도구 내 개체 브러시를 통해 이 기술을 직접 경험해 볼 수 있으며, 빠르고 효율적인 온디바이스 AI의 실용적인 사례를 보여줍니다.