llm-fine-tuning

1 개의 포스트

사용자 수준 차분 프라이버 (새 탭에서 열림)

Google Research는 대규모 언어 모델(LLM)을 사용자 수준의 차분 프라이버시(User-level Differential Privacy)를 유지하며 미세 조정하는 알고리즘을 연구하고 개선했습니다. 기존의 예시 수준 프라이버시보다 강력한 이 기법은 모델이 특정 사용자의 전체 데이터 포함 여부를 노출하지 않도록 보장하지만, 모델이 커질수록 노이즈가 증가하여 성능이 저하되는 한계가 있었습니다. 연구진은 데이터센터의 유연한 환경을 활용해 사용자 수준 샘플링(ULS) 알고리즘을 최적화함으로써, 프라이버시 보호와 모델 성능 사이의 균형을 효과적으로 맞출 수 있음을 증명했습니다. ### 사용자 수준 차분 프라이버시의 의의 * **프라이버시 강화:** 예시 수준 차분 프라이버시(Example-level DP)가 개별 데이터 포인트만 보호하는 반면, 사용자 수준 DP는 특정 사용자가 제공한 모든 데이터의 영향을 제한하여 훨씬 강력한 익명성을 보장합니다. * **실제 데이터 소유 구조 반영:** 오늘날 데이터는 개별 기기나 계정 단위로 묶여 있는 경우가 많으며, 공격자가 사용자의 특정 데이터 한 조각이 아닌 전체 활동 내역을 유추하는 것을 방지하는 데 최적화되어 있습니다. * **LLM 미세 조정의 필수성:** LLM을 특정 도메인에 맞게 최적화할 때 민감한 데이터가 포함되는 경우가 많으므로, 성능을 유지하면서도 프라이버시를 지키는 기술적 장치가 필수적입니다. ### ELS와 ULS 알고리즘 비교 * **예시 수준 샘플링(ELS):** 전체 데이터셋에서 무작위로 예시를 샘플링한 후, 기존 DP-SGD 알고리즘에 더 많은 노이즈를 추가하여 사용자 수준의 프라이버시를 확보하는 방식입니다. * **사용자 수준 샘플링(ULS):** 학습 배치(Batch)를 구성할 때 예시 단위가 아닌 사용자 단위로 무작위 샘플링을 진행하며, 선택된 사용자의 모든 데이터를 학습에 활용합니다. * **연합 학습과의 유사성:** ULS는 분산된 기기에서 학습하는 연합 학습(Federated Learning)과 유사한 구조를 가지지만, 데이터센터 환경에서는 모든 사용자의 데이터를 자유롭게 쿼리할 수 있어 더 유연한 최적화가 가능합니다. ### 기여 제한(Contribution Bound)을 통한 성능 최적화 * **데이터 전처리:** 각 사용자가 학습에 기여할 수 있는 예시의 최대 개수를 제한하는 '기여 제한' 설정이 성능의 핵심 변수로 작용합니다. * **노이즈와 정보의 균형:** 기여 제한을 너무 낮게 잡으면 사용자당 정보량이 부족해지고, 너무 높게 잡으면 프라이버시를 위해 추가해야 할 노이즈가 급격히 늘어나 학습 품질이 떨어집니다. * **데이터센터의 유연성 활용:** 연구진은 데이터센터 학습의 장점을 활용해 사용자와 예시를 모두 쿼리하며 기여 제한 파라미터를 정밀하게 조정함으로써, 연합 학습 기반의 알고리즘보다 더 높은 품질의 LLM 미세 조정이 가능함을 보여주었습니다. 사용자 수준의 프라이버시를 보장하면서 LLM을 미세 조정할 때는 **사용자 수준 샘플링(ULS)** 방식을 우선적으로 고려해야 합니다. 특히 데이터센터 환경에서 학습을 진행한다면, 특정 사용자의 데이터가 지나치게 편중되어 모델에 영향을 주지 않도록 **기여 제한(Contribution Bound)** 파라미터를 사전에 실험적으로 최적화하는 것이 모델의 정확도 손실을 최소화하는 가장 실용적인 전략입니다.