low-latency-queries

1 개의 포스트

Iceberg Low-Latency Queries with Materialized Views (feat. 실시간 거래 리포트) (새 탭에서 열림)

네이버의 실시간 거래 리포트 시스템은 대규모 데이터를 다양한 조건으로 빠르게 조회하기 위해 Apache Iceberg와 StarRocks의 Materialized View를 핵심 기술로 활용합니다. 단순히 데이터를 적재하는 수준을 넘어, 데이터의 최신성(Freshness)과 저지연(Low-Latency) 응답 속도, 그리고 시스템 확장성을 동시에 확보하는 것이 이번 기술 여정의 핵심 결론입니다. 이를 통해 복잡한 다차원 필터링이 필요한 비즈니스 환경에서도 사용자에게 즉각적인 분석 결과를 제공하는 데이터 레이크하우스 아키텍처를 구현했습니다. **실시간 거래 리포트의 기술적 도전 과제** * 대규모로 발생하는 거래 데이터를 실시간에 가깝게 수집하면서도, 사용자가 원하는 다양한 검색 조건에 즉각 응답해야 하는 성능적 요구사항이 있었습니다. * 데이터의 양이 방대해짐에 따라 기존의 단순 조회 방식으로는 응답 속도가 저하되는 문제가 발생했으며, 데이터의 신선도와 쿼리 성능 사이의 트레이드오프를 해결해야 했습니다. * 다차원 필터링과 집계 연산이 빈번한 리포트 특성상, 인덱싱 최적화와 리소스 효율성을 동시에 고려한 설계가 필요했습니다. **Iceberg와 StarRocks를 활용한 저지연 쿼리 전략** * **Apache Iceberg 기반 데이터 관리**: 데이터 레이크의 스토리지 포맷으로 Iceberg를 채택하여 ACID 트랜잭션을 보장하고, 대규모 데이터셋에 대한 효율적인 스키마 진화와 파티션 관리를 수행합니다. * **StarRocks의 구체화 뷰(Materialized View) 도입**: Iceberg에 저장된 원본 데이터를 직접 조회하는 대신, StarRocks의 Materialized View를 활용해 자주 사용되는 쿼리 결과를 미리 연산하여 저장함으로써 조회 속도를 비약적으로 향상시켰습니다. * **증분 업데이트 및 동기화**: 실시간으로 유입되는 데이터를 Materialized View에 효율적으로 반영하기 위해 Spark와 StarRocks 간의 연동 최적화를 진행하여 데이터의 최신성을 유지합니다. **아키텍처 구성 요소 및 운영 최적화** * **Spark**: 대용량 거래 데이터의 가공 및 Iceberg 테이블로의 수집을 담당하는 컴퓨팅 엔진으로 활용됩니다. * **StarRocks**: 고성능 OLAP 엔진으로서 Iceberg 외부에 위치하며, Materialized View를 통해 복잡한 조인(Join)과 집계(Aggregation) 쿼리를 가속화합니다. * **확장성 확보**: 데이터 노드와 컴퓨팅 리소스를 분리하여 운영함으로써 트래픽 증가에 유연하게 대응할 수 있는 구조를 설계했습니다. 대용량 실시간 분석 시스템을 구축할 때 Apache Iceberg만으로는 쿼리 성능의 한계가 있을 수 있으므로, StarRocks와 같은 고성능 OLAP 엔진의 구체화 뷰를 결합하는 레이크하우스 전략이 효과적입니다. 특히 데이터의 최신성이 중요한 금융 및 거래 리포트 분야에서 이와 같은 기술 조합은 인프라 비용을 절감하면서도 사용자 경험을 극대화할 수 있는 강력한 대안이 됩니다.