model-inference

2 개의 포스트

쿠팡의 머신러닝 플랫폼을 통한 ML 개발 가속화. 쿠팡의 머신러닝 개발 속도를 높이는 쿠팡만의 ML 플랫폼에 대하여 | by 쿠팡 엔지니어링 | Coupang Engineering Blog | Medium (새 탭에서 열림)

쿠팡은 검색, 가격 책정, 물류 등 비즈니스 전반에 머신러닝(ML)을 적극적으로 활용하며, 개발 효율을 극대화하기 위해 통합 ML 플랫폼을 구축했습니다. 이 플랫폼은 데이터 준비부터 모델 배포 및 모니터링까지의 전 과정을 자동화하고 표준화하여, 개발자가 인프라 관리보다는 모델 로직에 집중할 수 있는 환경을 제공합니다. 이를 통해 쿠팡은 대규모 컴퓨팅 자원을 효율적으로 관리하면서도 고객 경험을 개선하기 위한 혁신적인 기능들을 빠르게 시장에 선보이고 있습니다. **ML 개발 가속화를 위한 도전 과제** * **Time-to-Market 단축:** 아이디어 단계에서 모델을 실제 서비스에 적용하기까지 발생하는 복잡한 인프라 설정 과정을 간소화해야 함. * **표준화된 CI/CD 통합:** 머신러닝 모델의 학습, 검증, 배포 과정을 소프트웨어 공학의 지속적 통합 및 배포 체계와 결합하여 운영 안정성을 확보. * **확장성 있는 컴퓨팅 자원:** 대규모 데이터와 복잡한 딥러닝 모델 학습을 위해 GPU 및 CPU 자원을 효율적으로 할당하고 확장할 수 있는 시스템 필요. **효율적인 파이프라인 및 피처 관리** * **노트북 및 워크플로우:** 주피터 노트북(Jupyter Notebook) 환경과 Kubeflow 기반 파이프라인을 제공하여, 데이터 탐색부터 모델 학습까지의 워크플로우를 코드 형태로 관리하고 자동화함. * **피처 스토어(Feature Store):** 실시간 추론과 배치 학습 환경 간의 데이터 불일치를 방지하고, 검증된 피처를 재사용할 수 있는 중앙 집중형 저장소 운영. * **일관성 유지:** 온라인과 오프라인 환경에서 동일한 피처 엔지니어링 로직을 적용하여 모델 성능의 신뢰성을 높임. **모델 훈련 및 실시간 추론 인프라** * **분산 훈련 지원:** 고성능 GPU 클러스터를 활용한 분산 훈련 환경을 구축하여 Ko-BERT와 같은 대규모 언어 모델의 학습 시간을 획기적으로 단축. * **안정적인 추론 서비스:** 실시간 트래픽 처리를 위한 고가용성 서빙 환경과 대량의 데이터를 한 번에 처리하는 배치 추론 시스템을 동시에 지원. * **자동화된 배포:** 훈련된 모델을 검증한 후 클릭 몇 번으로 실제 운영 환경에 배포할 수 있는 셀프 서비스 기능 제공. **지속적인 모니터링 및 자원 최적화** * **가시성 확보:** 모델의 성능 지표뿐만 아니라 입력 데이터의 분포 변화(Data Drift)를 실시간으로 감지하여 모델 재학습 시점을 파악. * **Kubernetes 기반 관리:** 모든 ML 워크로드를 컨테이너화하여 Kubernetes 환경에서 실행함으로써 하드웨어 자원 활용도를 최적화하고 운영 부담을 최소화. **플랫폼 도입을 통한 주요 성과** * **검색 품질 향상:** 한국어에 특화된 Ko-BERT 모델 학습 과정을 플랫폼을 통해 최적화하여 검색 쿼리 이해도와 검색 결과의 정확도를 개선. * **실시간 가격 예측:** 수백만 개의 상품에 대해 시장 상황을 즉각적으로 반영하는 가격 예측 모델을 안정적으로 운영하여 비즈니스 민첩성 확보. 대규모 조직에서 ML 모델 개발 속도를 높이려면 개별 모델의 성능만큼이나 전체 생애주기를 관리하는 플랫폼의 역할이 중요합니다. 쿠팡처럼 다양한 서비스 도메인을 가진 환경에서는 표준화된 ML 플랫폼을 통해 인프라 복잡성을 추상화하고, 데이터 사이언티스트가 비즈니스 가치 창출에만 몰입할 수 있는 환경을 구축하는 것이 가장 효과적인 전략입니다.

쿠팡의 머신러닝 (새 탭에서 열림)

쿠팡의 머신러닝 플랫폼은 데이터 탐색부터 모델 배포에 이르는 전체 ML 생애주기를 가속화하여 개발 생산성을 혁신적으로 높이는 것을 목표로 합니다. 이를 통해 검색, 가격 책정, 물류 최적화 등 쿠팡의 다양한 서비스에 머신러닝을 효율적으로 적용하고 있으며, 인프라 관리 부담을 줄여 엔지니어들이 모델 고도화에만 집중할 수 있는 환경을 제공합니다. 결과적으로 이 플랫폼은 복잡한 비즈니스 문제를 해결하는 핵심 기술 기반으로서 쿠팡의 비즈니스 성장을 견인하고 있습니다. **플랫폼 구축의 동기와 목표** * **생산 모드 전환 시간 단축**: 실험 단계의 모델을 실제 서비스 환경에 배포하기까지 걸리는 시간을 줄여 비즈니스 요구사항에 빠르게 대응합니다. * **ML 개발의 CI/CD 도입**: 소프트웨어 공학의 지속적 통합 및 배포(CI/CD) 개념을 ML에 접목하여, 모델 학습과 배포 과정을 자동화하고 일관된 품질을 유지합니다. * **컴퓨팅 자원의 효율적 확장**: 하부 인프라에 대한 개입 없이도 대규모 학습 및 추론을 수행할 수 있도록 유연한 확장성을 제공하여 비용과 성능을 최적화합니다. **플랫폼의 핵심 기능 및 구성 요소** * **관리형 노트북 및 파이프라인 SDK**: 데이터 과학자들이 익숙한 Jupyter 기반 환경에서 작업할 수 있도록 지원하며, 전용 SDK를 통해 복잡한 ML 파이프라인을 손쉽게 정의하고 실행할 수 있습니다. * **피처 스토어(Feature Store)**: 학습과 추론 단계에서 동일한 피처 데이터를 재사용하고 공유할 수 있는 중앙 저장소를 제공하여, 데이터 정합성 문제를 해결하고 개발 효율을 높입니다. * **모델 학습 및 추론 서비스**: 다양한 ML 프레임워크를 지원하는 매니지드 학습 환경과, 대규모 트래픽을 처리할 수 있는 실시간 및 배치 추론 인프라를 운영합니다. * **모니터링 및 관측 가능성**: 배포된 모델의 성능 저하(Drift)나 이상 징후를 실시간으로 추적하여 모델의 신뢰성을 보장하고 신속한 재학습 여부를 결정합니다. **주요 성공 사례** * **Ko-BERT를 통한 검색 고도화**: 한국어 특화 언어 모델인 Ko-BERT를 학습시켜 고객의 검색 쿼리 의도를 더 정확하게 파악하고 상품 검색의 질을 향상시켰습니다. * **실시간 가격 예측**: 수백만 개의 상품에 대해 시장 변화를 즉각적으로 반영하는 실시간 가격 예측 모델을 성공적으로 배포하여 비즈니스 의사결정을 지원하고 있습니다. 쿠팡 ML 플랫폼은 단순히 도구의 집합을 넘어, 데이터 과학자가 비즈니스 가치 창출에만 전념할 수 있도록 돕는 강력한 엔지니어링 생태계입니다. 대규모 데이터와 복잡한 모델을 다루는 조직이라면 쿠팡의 사례처럼 파이프라인 자동화와 피처 정합성을 보장하는 통합 플랫폼 구축을 통해 개발 사이클을 획기적으로 단축할 수 있습니다.