nucleic-acid-design

1 개의 포스트

NucleoBench와 AdaBeam). (새 탭에서 열림)

Google Research와 Move37 Labs는 핵산(DNA/RNA) 서열 설계를 위한 표준화된 벤치마크인 ‘NucleoBench’와 새로운 최적화 알고리즘인 ‘AdaBeam’을 공개했습니다. 이 연구는 방대한 유전체 서열 탐색 공간에서 최적의 치료용 분자를 설계하기 위한 기존 알고리즘의 한계를 극복하고, 16가지 생물학적 과제 중 11개에서 기존 방식보다 뛰어난 성능을 입증했습니다. 특히 AdaBeam은 긴 서열과 복잡한 예측 모델에 최적화된 확장성을 보여주며 신약 개발 과정의 시간과 비용을 획기적으로 줄일 수 있는 가능성을 제시했습니다. ### 핵산 서열 설계의 복잡성과 최적화의 난제 * **방대한 탐색 공간**: 특정 기능을 가진 RNA 분자의 5' UTR 영역 하나만 해도 가능한 서열 조합이 $2 \times 10^{120}$개 이상으로, 단순한 무작위 탐색(Brute-force)으로는 최적의 서열을 찾는 것이 불가능합니다. * **설계 알고리즘의 병목 현상**: 최근 서열의 특성을 예측하는 AI 모델은 크게 발전했으나, 이 모델을 활용해 실제 최적의 서열을 생성해내는 '설계 알고리즘'에 대한 표준화된 평가 지표는 부족한 상황이었습니다. * **기존 방식의 한계**: 유전 알고리즘이나 시뮬레이티드 어닐링(Simulated Annealing) 같은 기존의 '그래디언트 프리(Gradient-free)' 방식은 최신 딥러닝 모델 내부의 유용한 정보(그래디언트)를 활용하지 못한다는 단점이 있습니다. ### NucleoBench: 대규모 표준 벤치마크 프레임워크 * **비교 평가의 표준화**: 16가지의 서로 다른 생물학적 도전 과제에 대해 9개의 알고리즘을 동일한 시작 서열과 조건에서 테스트하여 400,000회 이상의 실험을 수행했습니다. * **다양한 과제 범위**: 특정 세포 유형(간, 신경 세포 등)에서의 유전자 발현 제어, 전사 인자 결합 최적화, 염색질 접근성 개선, Enformer와 같은 대규모 모델을 이용한 장거리 DNA 서열 예측 등이 포함됩니다. * **알고리즘 분류**: AI 모델을 블랙박스로 취급하는 '그래디언트 프리' 방식과 신경망 내부의 개선 방향(그래디언트)을 지능적으로 추적하는 '그래디언트 기반' 방식을 체계적으로 비교 분석했습니다. ### AdaBeam: 적응형 빔 서치 기반의 하이브리드 알고리즘 * **성능 우위**: NucleoBench에서 수행된 16가지 과제 중 11가지에서 기존의 최첨단 알고리즘(FastSeqProp, Ledidi 등)을 능가하는 성적을 거두었습니다. * **탁월한 확장성**: 서열의 길이가 길어지거나 예측 모델의 크기가 커질수록 성능 차이가 더욱 두드러지며, 특히 긴 DNA 서열을 다루는 복잡한 생물학적 모델에서 높은 효율성을 보입니다. * **하이브리드 접근**: 그래디언트 정보를 활용하면서도 탐색의 효율성을 극대화하는 적응형 구조를 채택하여, 모델의 예측 정확도를 최대한 활용하면서도 계산 비용을 최적화했습니다. ### 실용적인 시사점 연구진은 AdaBeam 알고리즘과 NucleoBench 프레임워크를 오픈소스로 공개하여 누구나 활용할 수 있도록 했습니다. 더 정교한 CRISPR 유전자 치료제나 안정성이 높은 mRNA 백신을 설계하려는 연구자들은 이 도구들을 통해 자신의 예측 모델에 가장 적합한 설계 알고리즘을 선택하고, 실제 실험(Wet lab) 이전에 계산적으로 검증된 최적의 후보 서열을 도출함으로써 연구의 성공률을 높일 수 있습니다.