performance-optimization

3 개의 포스트

@RequestCache: HTTP 요청 범위 캐싱을 위한 커스텀 애너테이션 개발기 (새 탭에서 열림)

웹 애플리케이션에서 하나의 HTTP 요청 내에 발생하는 중복된 API 호출은 성능 저하와 리소스 낭비를 초래하며, 이를 해결하기 위해 요청 범위(Request Scope) 내에서 결과를 캐싱하는 `@RequestCache` 커스텀 애너테이션을 개발했습니다. 이 기능은 Spring의 `RequestAttribute`를 활용해 요청별로 독립적인 캐시 공간을 보장하며, 요청 종료 시 자동으로 메모리가 정리되는 효율적인 생명주기 관리 구조를 가집니다. 이를 통해 복잡한 파라미터 전달이나 부적절한 TTL 설정 문제를 해결하고 시스템의 전반적인 응답 속도를 개선할 수 있습니다. ### 파라미터 전달 및 범용 캐시의 한계 * **응답 객체 전달 방식의 복잡성**: 데이터를 실제 사용하는 말단 서비스까지 객체를 넘기기 위해 중간 계층의 모든 메서드 시그니처를 수정해야 하며, 이는 코드 가독성을 떨어뜨리고 관리를 어렵게 만듭니다. * **전략 패턴의 유연성 저하**: 공통 인터페이스를 사용하는 경우, 특정 구현체에서만 필요한 데이터를 파라미터에 포함해야 하므로 인터페이스의 범용성이 훼손됩니다. * **TTL(Time To Live) 설정의 딜레마**: Redis나 로컬 캐시 사용 시 TTL이 너무 짧으면 동일 요청 내 중복 호출을 막지 못하고, 너무 길면 서로 다른 요청 간에 의도치 않은 데이터 공유가 발생하여 데이터 정합성 문제가 생길 수 있습니다. ### @RequestCache의 특징과 동작 원리 * **RequestAttribute 기반 저장소**: 내부적으로 `ThreadLocal`을 사용하는 `RequestAttribute`에 데이터를 저장하여, 스레드 간 격리를 보장하고 각 HTTP 요청마다 독립적인 캐시 인스턴스를 유지합니다. * **자동 생명주기 관리**: 캐시의 수명이 HTTP 요청의 생명주기와 일치하므로 별도의 만료 시간을 계산할 필요가 없으며, 요청 완료 시 Spring의 `FrameworkServlet`에 의해 자동으로 정리되어 메모리 누수를 방지합니다. * **AOP 기반의 간편한 적용**: 비즈니스 로직을 수정할 필요 없이 캐싱이 필요한 메서드에 `@RequestCache` 애너테이션을 선언하는 것만으로 손쉽게 중복 호출을 제거할 수 있습니다. ### @RequestScope와 프록시 메커니즘 * **프록시 패턴 활용**: `@RequestScope`로 선언된 빈은 Spring 컨테이너에 프록시 객체로 등록되며, 실제 메서드 호출 시점에 현재 요청에 해당하는 실제 인스턴스를 찾아 호출을 위임합니다. * **상태 저장 방식**: `AbstractRequestAttributesScope` 클래스를 통해 실제 객체가 `RequestAttributes` 내에 저장되며, 이를 통해 동일 요청 내에서는 같은 인스턴스를 공유하게 됩니다. 동일 요청 내에서 외부 API 호출이 잦거나 복잡한 연산이 반복되는 서비스라면, 전역 캐시를 도입하기 전 `@RequestCache`와 같은 요청 범위 캐싱을 통해 코드 순수성을 유지하면서도 성능을 최적화할 것을 권장합니다.

API 호출식 웜업의 부작용을 넘어서 : 라이브러리만 데우는 JVM 웜업 (새 탭에서 열림)

JVM 기반 웹 애플리케이션은 실행 초기 JIT(Just-In-Time) 컴파일러의 최적화 과정에서 발생하는 응답 지연 문제를 해결하기 위해 '웜업' 과정이 필수적입니다. 기존의 API 호출식 웜업은 데이터 오염이나 외부 시스템 부하와 같은 부작용을 초래할 수 있으나, 본 발표에서는 이를 극복하기 위해 핵심 라이브러리만을 직접 예열하는 '라이브러리 웜업' 방식을 제안합니다. 이 기술을 통해 부작용 없이 애플리케이션 배포 직후의 성능을 안정적으로 확보할 수 있습니다. **JVM 웜업의 필요성과 기존 방식의 한계** * JVM은 실행 초기에 인터프리터 방식으로 동작하다가, 반복되는 코드를 JIT 컴파일러가 네이티브 코드로 최적화하는 과정을 거치며 성능이 올라갑니다. * 이 최적화가 완료되기 전까지는 응답 시간이 길어지거나 CPU 사용량이 급증하는 현상이 발생하므로, 실제 트래픽이 들어오기 전 코드를 미리 실행하는 웜업이 필요합니다. * 기존의 API 호출 방식은 가짜 요청을 보내는 과정에서 DB 데이터 정합성을 해칠 수 있고, 외부 API 호출에 따른 불필요한 연동 부하를 발생시키는 단점이 있습니다. **라이브러리 웜업의 핵심 아이디어와 구현** * 비즈니스 로직 전체를 수행하는 대신, 애플리케이션에서 성능 비중이 크고 공통적으로 사용되는 '라이브러리 코드'만을 타겟팅하여 예열합니다. * 예를 들어 JSON 파싱, 암호화, 복잡한 수치 계산 모듈 등 JIT 컴파일 임계치(Threshold)를 넘겨야 하는 핵심 메서드들을 반복 호출하도록 설계합니다. * 애플리케이션 시작 단계(Post-Construct 등)에서 비즈니스 로직과는 독립된 웜업 코드를 실행함으로써 데이터 오염의 위험을 원천적으로 차단합니다. **성능 검증 및 실무적 이점** * 라이브러리 웜업 적용 후, 배포 초기에 발생하는 응답 속도의 '튀는 현상(Spike)'이 현저히 감소하고 전체적인 레이턴시가 안정화됨을 확인했습니다. * API 호출 방식보다 구현이 단순하고 외부 의존성이 적어 관리가 용이하며, 배포 파이프라인의 안정성을 높이는 데 기여합니다. * 다만, 모든 비즈니스 경로를 커버하지는 못하므로 성능 영향도가 높은 핵심 모듈을 선별하여 집중적으로 웜업하는 전략이 유효합니다. 빠른 스케일 아웃이 필요한 마이크로서비스 환경이나 지연 시간에 민감한 실시간 서비스라면, API 기반 웜업의 대안으로 이와 같은 라이브러리 단위의 정밀한 웜업 도입을 적극 권장합니다.

100배 더 빠르게 (새 탭에서 열림)

넷플릭스는 대규모 데이터 및 머신러닝 워크플로우를 관리하는 오케스트레이터인 'Maestro'의 엔진을 전면 개편하여 성능을 100배 이상 향상시켰습니다. 기존 수 초 단위에 달하던 실행 오버헤드를 밀리초(milliseconds) 단위로 단축함으로써, 광고나 라이브 스트리밍과 같이 저지연 및 고빈도 스케줄링이 필요한 신규 비즈니스 요구사항을 충족하게 되었습니다. 이번 업데이트를 통해 Maestro는 확장성뿐만 아니라 극도로 빠른 실행 속도까지 갖추게 되어 개발자들의 작업 효율을 획기적으로 개선했습니다. **기존 아키텍처의 한계와 병목 현상** * **3계층 구조의 복잡성:** Maestro는 API/런타임, 엔진, 내부 플로우 엔진의 3단계로 구성되었으나, 각 계층 간의 데이터 전달과 상태 동기화 과정에서 상당한 시간이 소요되었습니다. * **폴링(Polling) 방식의 지연:** 기존의 내부 플로우 엔진은 일정 간격으로 태스크를 확인하는 폴링 방식으로 동작하여, 단계별 상태 전이 시마다 초 단위의 불필요한 대기 시간이 발생했습니다. * **분산 큐 및 데이터베이스 부하:** 분산 작업 큐(Dyno-queues)와 데이터베이스 액세스 패턴에서 발생하는 오버헤드로 인해 워크플로우가 복잡해질수록 전체 실행 속도가 저하되는 문제가 있었습니다. * **경합 조건 발생:** 강력한 일관성 보장이 부족하여 특정 단계가 두 개의 워커에서 동시에 실행되는 등의 레이스 컨디션(Race condition) 문제가 간혹 발생했습니다. **100배 빠른 엔진을 위한 설계 최적화** * **이벤트 기반 리액티브 모델:** 폴링 방식을 폐기하고 이벤트 기반 아키텍처를 도입하여, 태스크 완료 즉시 다음 단계가 실행되도록 지연 시간을 최소화했습니다. * **상태 머신 직접 관리:** 워크플로우 그래프를 내부 플로우 태스크로 변환하던 중간 레이어를 제거하고, 엔진이 직접 워크플로우와 단계별 상태 머신을 제어하도록 단순화했습니다. * **데이터 액세스 최적화:** 데이터베이스 쓰기 횟수를 줄이고 효율적인 캐싱 및 분산 잠금(Distributed Locking) 메커니즘을 적용하여 성능과 안정성을 동시에 확보했습니다. * **추상화 계층 정합성:** Maestro 엔진이 상태 전이와 생명주기를 전담하게 함으로써, 하부 플로우 엔진에 대한 의존성을 없애고 엔진의 실행 효율을 극대화했습니다. **성능 향상 결과 및 활용 사례** * **실행 속도 극대화:** 워크플로우 엔진의 내부 오버헤드가 수 초에서 밀리초 단위로 줄어들며 전체적인 응답 속도가 100배 이상 개선되었습니다. * **신규 비즈니스 지원:** 1시간 미만의 짧은 주기로 실행되는 스케줄링이나 광고(Ads), 게임 등 저지연 워크플로우가 필수적인 도메인에 적용 가능해졌습니다. * **개발 생산성 제고:** 반복적인 개발 및 테스트 사이클에서 발생하는 대기 시간이 사라져 엔지니어들의 반복 작업 효율이 크게 향상되었습니다. 대규모 확장성과 초고성능을 동시에 요구하는 환경이라면, 넷플릭스에서 검증되고 오픈 소스로 공개된 최신 버전의 Maestro 도입을 적극적으로 검토해 볼 가치가 있습니다. 특히 기존 워크플로우 엔진의 지연 시간으로 인해 실시간 처리에 어려움을 겪고 있는 조직에 강력한 해결책이 될 수 있습니다.