prompt-injection

2 개의 포스트

안전은 기본, 비용 절감은 덤: AI 서비스에 별도 가드레일이 필요한 이유 (새 탭에서 열림)

AI 가드레일은 모델의 오동작을 막는 필수 안전장치이지만, 단순히 시스템 프롬프트에 규칙을 심는 방식은 모델 본연의 성능 저하와 예기치 못한 부작용을 초래할 수 있습니다. 시스템 프롬프트는 규칙의 위치나 미세한 수정에 따른 출력 변동성에 매우 민감하기 때문에, 모델 외부에서 입출력을 검증하는 별도의 가드레일 체계를 구축하는 것이 보안과 서비스 안정성 측면에서 더욱 효율적입니다. ### 시스템 프롬프트 기반 가드레일의 과도한 거절 문제 * 시스템 프롬프트에 강력한 안전 규칙을 부여하면, 모델이 전체적으로 보수적인 태도를 취하게 되어 무해한 질문까지 거절하는 위양성(False Positive) 확률이 높아집니다. * 연구 결과에 따르면 안전 프롬프트 추가 시 전체 쿼리의 임베딩이 '거절' 방향으로 이동하며, "Python 프로세스를 죽이는(kill) 방법"과 같은 기술적인 질문조차 위험한 요청으로 오인하여 거절하는 패턴이 관찰됩니다. * 이는 보안 강도와 사용자 경험(정상적인 답변 수신) 사이의 트레이드오프를 심화시켜 모델의 유용성을 떨어뜨리는 원인이 됩니다. ### 프롬프트 위치 및 순서에 따른 위치 편향(Position Bias) * LLM은 긴 컨텍스트 안에서 처음과 끝부분의 정보는 잘 인식하지만, 중간에 위치한 정보는 간과하는 'Lost in the Middle' 현상을 보입니다. * 여러 제약 조건이 섞여 있는 경우, 가드레일 규칙이 시스템 프롬프트의 어느 지점에 위치하느냐에 따라 모델이 해당 규칙을 지키는 가중치가 달라집니다. * 실험 결과에 따르면 난이도가 높은 제약을 앞쪽에 배치할 때 성능이 가장 좋으며, 가드레일 규칙이 중간이나 뒤로 밀려날 경우 보안 성능이 일정하게 유지되지 않는 불안정성을 보입니다. ### 미세한 수정이 유발하는 성능의 나비효과 * 시스템 프롬프트 내의 아주 사소한 변화(공백 추가, "감사합니다" 문구 삽입 등)만으로도 모델의 결정 경계가 이동하여 전체 예측 값의 10% 이상이 바뀔 수 있습니다. * 특히 출력 형식을 지정(JSON/XML)하거나 특정 탈옥 방지 문구를 섞는 행위가 모델의 내부 추론 경로를 완전히 바꾸어, 일부 작업에서 성능이 급락하는 '재앙적인 수준의 붕괴'가 발생하기도 합니다. * 안전 규칙, 스타일, 형식 등 수십 줄의 요구사항을 하나의 시스템 프롬프트에 담을 경우, 한 줄의 수정이 모델이 어떤 규칙을 우선시할지에 대한 예측 불가능한 변화를 일으킵니다. ### 별도 가드레일 적용을 통한 보완과 추천 * 모델 본연의 성능을 유지하면서도 안전성을 확보하기 위해서는 모델 앞뒤에 독립적인 보안 게이트(별도 가드레일)를 세우는 방식이 효과적입니다. * 사용자의 입력 단계에서 위험을 감지해 차단(Tripwires)하거나 안전하게 재작성(Rewriter)하여 전달하고, 모델의 응답 후에도 다시 한번 결과를 점검하는 다층 방어 체계를 구축해야 합니다. * 이를 통해 시스템 프롬프트의 복잡도를 낮추고, 보안 정책의 수정이 모델의 전체 성능(추론 로직)에 직접적인 영향을 주지 않도록 분리하는 것이 실무적으로 권장됩니다.

AI 제품 개발 중 마주칠 수 있는 보안 위협 사례와 대책 방안 (새 탭에서 열림)

AI 제품 개발은 생산성을 비약적으로 높여주지만, 환각 현상이나 프롬프트 주입과 같은 새로운 형태의 보안 위협을 동반합니다. 이러한 리스크는 단순히 오답을 제공하는 수준을 넘어 악성코드 설치, 원격 코드 실행(RCE), 민감 정보 유출로 이어질 수 있어 기존과는 다른 다각도의 방어 전략이 필요합니다. LY Corporation은 실제 사례 분석을 통해 AI 모델과 외부 도구 간의 접점을 보호하고 보안 검토를 자동화하는 등의 대응 방안을 구축하고 있습니다. ## 슬랍스쿼팅(Slopsquatting)과 패키지 오인 * AI가 존재하지 않는 소프트웨어 패키지 이름을 마치 실제인 것처럼 제안하는 '환각(Hallucination)' 현상을 악용한 공격입니다. * 예를 들어, AI가 `huggingface_hub[cli]` 대신 `huggingface-cli`라는 잘못된 패키지 설치를 권장할 때, 공격자가 미리 해당 이름으로 악성 패키지를 등록해 두면 사용자가 이를 설치하게 됩니다. * 이를 방지하기 위해 AI가 생성한 코드나 설치 지침을 실행하기 전 반드시 공식 문서와 대조하여 검증하는 절차가 필수적입니다. ## 프롬프트 주입을 통한 원격 코드 실행(RCE) * Vanna AI 사례(CVE-2024-5565)와 같이 자연어를 SQL이나 파이썬 코드로 변환하여 직접 실행하는 서비스에서 주로 발생합니다. * 사용자가 입력창에 악의적인 명령을 주입하여 애플리케이션 권한 내에서 임의의 시스템 명령어를 실행하도록 유도할 수 있습니다. * LLM을 전적으로 신뢰하여 코드를 실행하게 두지 말고, 사용자 입력을 엄격히 검증(Sanitize)하며 데이터 생성 용도로만 제한적으로 활용해야 합니다. ## 오피스 AI에서의 간접 프롬프트 주입 * 이메일이나 문서 본문에 숨겨진 악성 지시사항을 AI가 읽고 실행하게 만드는 '간접 주입' 방식의 위협입니다. * 가령, 피싱 사이트로 유도를 하거나 비밀번호 변경을 종용하는 문구가 포함된 이메일을 AI가 요약하는 과정에서 사용자를 속이는 스크립트를 수행하게 될 수 있습니다. * 입력 데이터뿐만 아니라 AI가 내놓는 출력물에 대해서도 가드레일(Guardrails)을 적용하여 이상 징후를 탐지하는 이중 방어 체계가 필요합니다. ## 코딩 에이전트의 권한 남용 및 데이터 노출 * GitHub MCP(Model Context Protocol)와 같이 자동화된 코딩 에이전트가 공개 저장소와 비공개 저장소에 동시에 접근할 때 발생합니다. * 공개 저장소의 이슈나 PR에 포함된 악성 명령어가 에이전트를 통해 실행되면, 에이전트의 권한을 이용해 비공개 저장소에 있는 급여 정보나 개인정보를 외부로 유출할 수 있습니다. * 에이전트가 접근 가능한 데이터 범위를 최소화하고, 작업 단위별로 권한을 분리하는 보안 디자인이 중요합니다. ## 임베딩 인버전(Embedding Inversion)을 통한 정보 복원 * 텍스트 데이터를 수치화한 벡터 임베딩 값으로부터 원본 텍스트를 역으로 추론해내는 공격 기법입니다. * 임베딩 데이터 자체가 유출될 경우, 비식별화되었다고 판단했던 민감한 정보가 다시 복원되어 프라이버시 침해로 이어질 수 있습니다. * 벡터 데이터베이스에 대한 접근 제어를 강화하고 임베딩 데이터의 보안 수준을 원본 데이터와 동일하게 관리해야 합니다. AI 프로덕트의 안전성을 확보하기 위해서는 기획 단계에서의 보안 디자인 리뷰는 물론, 위협 모델링 자동화 도구인 'ConA'나 소스 코드 취약점 분석 자동화 도구인 'LAVA'와 같은 기술적 솔루션을 적극적으로 도입하여 보안 프로세스를 내재화하는 것이 권장됩니다.