quantum-computing

5 개의 포스트

동적 표면 코드가 양 (새 탭에서 열림)

구글 퀀텀 AI(Google Quantum AI) 연구팀은 기존의 정적 방식에서 벗어나 회로 구조를 유연하게 변경하는 '동적 표면 코드(Dynamic Surface Codes)'를 성공적으로 시연했습니다. 이 방식은 더 적은 수의 커플러를 사용하면서도 리크(leakage)와 같은 상관 오류를 효과적으로 억제하며, 다양한 종류의 양자 게이트를 활용할 수 있는 유연성을 제공합니다. 이번 연구 결과는 하드웨어 설계의 복잡성을 낮추면서도 논리적 큐비트의 안정성을 비약적으로 높일 수 있음을 입증하여 실용적인 양자 컴퓨팅 구현을 위한 새로운 경로를 제시했습니다. **동적 표면 코드와 시공간적 감지 영역의 변화** * 양자 오류 정정(QEC)은 물리적 오류가 논리적 정보에 영향을 주지 않도록 오류를 '감지 영역(detecting region)' 안에 국소화하는 것이 핵심입니다. * 기존의 정적 회로는 매 사이클마다 동일한 물리적 연산과 타일링 구조를 반복하지만, 동적 회로는 매 사이클마다 감지 영역의 타일링 형상을 동적으로 변경합니다. * 이러한 유연성은 특정 큐비트나 커플러가 작동하지 않는 '드롭아웃(dropout)' 상황을 우회하게 해주며, 하드웨어 제약 조건 속에서도 최적의 오류 정정 성능을 유지하게 합니다. **육각형 격자 구조를 통한 하드웨어 설계 최적화** * 기존 사각형 격자 구조는 큐비트당 4개의 커플러가 필요하지만, 동적 회로를 적용하면 큐비트당 3개의 커플러만 사용하는 육각형 격자에서도 QEC를 수행할 수 있습니다. * 구글의 윌로우(Willow) 프로세서에서 실험한 결과, 육각형 코드는 기존 정적 회로와 대등한 수준의 오류 억제 성능(코드 거리 3에서 5로 확장 시 오류율 2.15배 개선)을 보여주었습니다. * 커플러 수를 줄이면 칩 제조 및 제어 복잡도가 낮아지며, 시뮬레이션상으로는 최적화 알고리즘의 효율성이 높아져 오류 억제 인자가 약 15% 향상되는 효과를 거둘 수 있습니다. **리크 오류 억제를 위한 '워킹' 회로와 iSWAP 게이트 활용** * 측정 큐비트의 위치를 매 사이클마다 이동시키는 '워킹(walking)' 방식을 도입하여, 계산 공간을 벗어나는 리크 현상과 상관 오류가 누적되는 것을 방지했습니다. * 표준적인 CZ 게이트 외에도 iSWAP과 같은 비표준적 2-큐비트 얽힘 게이트를 사용하는 동적 회로를 시연함으로써 하드웨어 특성에 맞는 다양한 게이트 선택권을 확보했습니다. * 이러한 기법들은 물리적 큐비트의 결함을 보완하고, 더 정교한 오류 정정 아키텍처를 설계할 수 있는 기술적 토대가 됩니다. 동적 표면 코드는 고정된 하드웨어 구조에 소프트웨어를 맞추는 것이 아니라, 오류 정정 알고리즘에 맞춰 하드웨어 운용 방식을 유연하게 최적화할 수 있음을 보여줍니다. 특히 육각형 격자 구조의 채택은 칩의 배선 복잡도를 획기적으로 줄여주므로, 향후 수천 개 이상의 큐비트를 포함하는 대규모 양자 프로세서를 설계할 때 핵심적인 전략이 될 것으로 권장됩니다.

구글 리서치 20 (새 탭에서 열림)

2025년 구글 리서치는 기초 연구가 실제 제품과 사회적 가치로 연결되는 '혁신의 마법 주기(Magic Cycle)'를 가속화하며 생성형 AI, 과학적 발견, 양자 컴퓨팅 분야에서 기념비적인 성과를 거두었습니다. 제미나이 3(Gemini 3)로 대표되는 모델의 효율성과 사실성 개선은 물론, 스스로 도구를 사용하는 에이전트 모델과 질병 치료를 위한 바이오 AI 기술을 통해 기술적 한계를 한 단계 더 확장했습니다. 이러한 연구 결과는 단순한 기술 진보를 넘어 기후 변화 대응과 교육 등 인류 공통의 과제를 해결하는 데 실질적인 기여를 하고 있습니다. **생성형 모델의 효율성 및 신뢰성 고도화** * **추론 효율성 최적화:** '투기적 디코딩(Speculative decoding)'과 가상 머신 작업 수명을 예측하는 'LAVA' 알고리즘을 도입하여 대규모 클라우드 데이터 센터의 리소스 효율성과 비용 절감을 실현했습니다. * **사실성(Factuality) 강화:** 2021년부터 이어진 LLM 사실성 연구를 집대성하여 제미나이 3를 역대 가장 사실적인 모델로 구축했으며, FACTS 벤치마크 등을 통해 모델의 정보 근거 제시 능력을 입증했습니다. * **다국어 및 다문화 대응:** 오픈 모델인 '젬마(Gemma)'를 140개 이상의 언어로 확장하고, 문화적 맥락을 이해하는 'TUNA' 분류 체계와 'Amplify' 이니셔티브를 통해 글로벌 사용자에게 최적화된 AI 경험을 제공합니다. **생성형 UI와 지능형 에이전트의 등장** * **인터랙티브 인터페이스:** 사용자의 프롬프트에 따라 웹페이지, 게임, 도구 등의 시각적 인터페이스를 실시간으로 생성하는 '생성형 UI'를 제미나이 3에 도입했습니다. * **에이전트 기능(Agentic AI):** 단순 응답을 넘어 복잡한 작업을 수행하는 '프로젝트 자비스(Project Jarvis)'와 웹 브라우징 에이전트를 통해 사용자의 일상 업무를 자동화하는 능력을 선보였습니다. * **코드 및 추론 능력:** 고도화된 추론 아키텍처를 통해 소프트웨어 엔지니어링 성능을 비약적으로 향상시켰으며, 이는 구글 내부 코드의 25% 이상이 AI에 의해 생성되는 결과로 이어졌습니다. **과학적 혁신과 헬스케어의 진보** * **생물학적 발견:** 단백질 구조 예측을 넘어 분자 상호작용을 모델링하는 'AlphaFold 3'와 새로운 단백질을 설계하는 'AlphaProteo'를 통해 신약 개발과 질병 이해의 속도를 높였습니다. * **의료 특화 모델:** 'Med-Gemini'와 같은 의료 전용 모델을 개발하여 흉부 엑스레이 분석, 유전체 데이터 해석 등 전문적인 의료 진단 보조 도구로서의 가능성을 확인했습니다. * **뇌 과학 연구:** 하버드 대학과의 협력을 통해 인간 대뇌 피질의 시냅스 수준 지도를 제작하는 등 신경과학 분야에서도 전례 없는 성과를 냈습니다. **양자 컴퓨팅과 지구 과학을 통한 미래 대비** * **양자 우위와 실용화:** 양자 오류 정정 기술의 혁신을 통해 실제 문제 해결에 활용 가능한 양자 컴퓨팅 시대를 앞당겼습니다. * **기후 및 환경 대응:** 산불을 실시간으로 추적하는 'FireSat' 위성 네트워크와 비행운(Contrails) 감소 연구 등을 통해 기후 위기 대응을 위한 구체적인 AI 솔루션을 제시했습니다. * **책임감 있는 AI:** 콘텐츠의 출처를 밝히는 'SynthID' 워터마킹 기술을 텍스트와 비디오로 확대 적용하여 AI 생성 콘텐츠의 투명성과 안전성을 강화했습니다. 구글의 2025년 성과는 AI가 단순한 보조 도구를 넘어 과학 연구의 속도를 높이고 복잡한 사회 문제를 해결하는 강력한 에이전트로 진화했음을 보여줍니다. 기업과 연구자는 이제 단순한 챗봇 구현을 넘어, 특정 도메인에 특화된 에이전트 모델과 생성형 UI를 활용한 새로운 사용자 경험 설계에 집중해야 할 시점입니다.

최적화를 위한 새로운 양자 (새 탭에서 열림)

Google Quantum AI가 발표한 새로운 양자 알고리즘인 '디코딩된 양자 간섭(Decoded Quantum Interferometry, DQI)'은 기존 고전 컴퓨터로는 해결하기 어려운 복잡한 최적화 문제를 풀 수 있는 획기적인 방법론을 제시합니다. 이 알고리즘은 양자 역학의 파동적 특성을 활용해 최적화 문제를 격자 구조의 '복호화(Decoding)' 문제로 변환함으로써, 특정 영역에서 고전 알고리즘 대비 압도적인 연산 속도 향상을 증명했습니다. 이는 향후 대규모 오류 수정 양자 컴퓨터가 실질적인 상업적·과학적 난제를 해결하는 데 핵심적인 도구가 될 것임을 시사합니다. **DQI의 핵심 원리: 최적화와 복호화의 결합** - DQI 알고리즘은 양자의 파동 성질을 이용해 간섭 패턴을 형성하며, 이를 통해 수많은 선택지 중 최적에 가까운 해답으로 수렴하도록 설계되었습니다. - 알고리즘의 핵심 단계는 수백에서 수천 차원의 격자(Lattice) 공간에서 특정 지점과 가장 가까운 격자점을 찾는 '복호화' 문제를 해결하는 것입니다. - 지난 수십 년간 데이터 통신 및 저장 분야에서 발전해 온 고도화된 복호화 알고리즘을 양자 간섭과 결합함으로써, 기존에는 불가능했던 방식으로 최적화 문제의 해를 찾습니다. **구체적인 성과: 최적 다항식 교차(OPI) 문제** - 연구팀은 '최적 다항식 교차(Optimal Polynomial Intersection, OPI)' 문제에서 DQI의 강력한 성능을 확인했습니다. 이는 데이터 과학의 다항식 회귀나 암호학 등에서 발생하는 고난도 문제입니다. - 양자 컴퓨터는 DQI를 통해 OPI 문제를 DVD나 QR 코드에 쓰이는 '리드-솔로몬(Reed-Solomon) 코드' 복호화 문제로 변환하여 처리합니다. - 분석 결과, 기존 고전 알고리즘으로 약 $10^{23}$(1,000해) 번의 연산이 필요한 특정 문제를 양자 컴퓨터는 단 몇 백만 번의 논리 연산만으로 해결할 수 있음을 밝혀냈습니다. **양자 우위의 근원과 구조적 변화** - 고전 컴퓨터는 비용 함수의 지형이 복잡하고 불규칙할 때 최적해를 찾는 데 한계를 보이지만, DQI는 이러한 문제를 구조화된 격자 복호화 문제로 치환하여 돌파구를 마련합니다. - 비록 최적화와 복호화 모두 계산 복잡도가 높은 'NP-난해(NP-hard)' 문제에 속하지만, 양자 알고리즘은 특정 구조를 가진 문제들에서 기하급수적인 속도 향상을 제공할 수 있습니다. - 이번 연구는 양자 하드웨어가 충분히 발전했을 때, 어떤 과학적·상업적 유즈케이스에서 양자 우위를 확보할 수 있을지에 대한 구체적인 이정표를 제시합니다. 이 기술이 실용화되면 물류 경로 최적화, 임상 시험 설계, 고도화된 데이터 분석 등 고전 컴퓨팅의 한계에 부딪혔던 다양한 산업 분야에서 비약적인 효율성 개선이 가능할 것으로 기대됩니다. 대규모 오류 수정 양자 하드웨어 개발에 맞추어 DQI와 같은 알고리즘을 적용할 준비를 하는 것이 미래 기술 경쟁력 확보의 관건이 될 것입니다.

연구 혁신과 실제 (새 탭에서 열림)

구글 리서치는 강력한 AI 모델과 에이전트 도구를 통해 기초 과학 연구가 실제 서비스로 연결되고, 이것이 다시 새로운 연구 동력으로 이어지는 '연구의 마법 사이클(Magic Cycle of Research)'을 가속화하고 있습니다. 특히 지학, 유전학, 양자 컴퓨팅 분야에서 거둔 최근의 성과들은 AI가 복잡한 데이터를 이해하고 추론하는 단계를 넘어 인류가 직면한 거대한 과제들을 해결하는 핵심 도구로 진화했음을 보여줍니다. 이러한 기술적 진보는 오픈 플랫폼과 협력을 통해 전 세계 학계와 산업계로 확산되며 실질적인 사회적 영향력을 창출하고 있습니다. ### Google Earth AI: 거대 언어 모델 기반의 지리공간 추론 * 홍수, 산불, 대기 질 등 다양한 지리공간 AI 모델을 통합하여 지구 전체의 변화를 전례 없는 수준으로 파악할 수 있는 인프라를 구축했습니다. * '지리공간 추론 에이전트(Geospatial Reasoning Agent)'를 도입하여, 전문가가 아니더라도 자연어를 통해 복잡한 지리 데이터를 분석하고 공급망 관리나 위기 대응에 필요한 통찰을 얻을 수 있게 했습니다. * 하천 홍수 예측 모델의 범위를 전 세계 150개국, 20억 명 이상의 인구 거주 지역으로 대폭 확장하여 재난 대비 능력을 강화했습니다. * 새로운 원격 감지 파운데이션 모델과 인구 역학 모델을 공개하고, 구글 어스에 제미나이(Gemini) 기능을 탑재하여 위성 이미지 내 객체 검색 성능을 높였습니다. ### DeepSomatic 및 유전학 연구: 정밀 의료를 통한 암 정복 * 네이처 바이오테크놀로지에 발표된 'DeepSomatic'은 종양 내에서 발생하는 미세한 체세포 변이(Somatic mutations)를 정확하게 식별하여 맞춤형 암 치료를 지원합니다. * 지난 10년간의 유전학 연구 노하우를 결합하여 인간 및 비인간 게놈 지도를 정교하게 매핑하고, 질병의 근본 원인을 파악하는 데 기여하고 있습니다. * 'Cell2Sentence' 기술을 통해 단일 세포 데이터를 언어 형태로 변환함으로써, 거대 언어 모델(LLM)이 생물학적 데이터를 학습하고 질병의 메커니즘을 추론할 수 있는 환경을 조성했습니다. ### 양자 에코(Quantum Echoes): 양자 시스템을 활용한 물리 법칙 시뮬레이션 * 양자 프로세서를 단순한 계산기가 아닌, 복잡한 물리 현상을 관찰하고 시뮬레이션하는 강력한 도구로 활용하고 있습니다. * '양자 에코' 기법을 통해 양자 시스템 내에서 정보가 어떻게 확산되고 소멸되는지(Information Scrambling)를 정밀하게 측정하는 데 성공했습니다. * 이러한 성과는 양자 컴퓨팅의 성능을 검증하는 벤치마크로 활용될 뿐만 아니라, 기존 고전 컴퓨터로는 불가능했던 물리적 난제들을 해결하는 가교 역할을 합니다. AI는 이제 단순한 소프트웨어 기술을 넘어 과학적 발견의 속도를 기하급수적으로 높이는 '가속기'가 되었습니다. 구글이 공개한 DeepSomatic과 같은 도구들과 지구 환경 모델들을 적극 활용한다면, 의료 및 환경 분야의 복잡한 문제들을 해결하는 데 있어 기술적 진입 장벽을 낮추고 혁신적인 솔루션을 빠르게 도출할 수 있을 것입니다.

검증 가능한 양자 우위 (새 탭에서 열림)

구글 퀀텀 AI(Google Quantum AI) 연구팀은 최근 '양자 에코(Quantum Echoes)' 알고리즘을 통해 검증 가능한 양자 우위(Verifiable Quantum Advantage)를 입증하는 데 성공했습니다. 이 연구는 시간 순서가 바뀐 상관 함수(OTOC, Out-of-Time-Order Correlators)를 측정하여 양자 시스템의 혼돈(Chaos) 현상을 제어하고, 기존 고전 컴퓨터로는 불가능했던 계산 영역에 도달했음을 보여줍니다. 이는 단순한 이론적 증명을 넘어 핵자기공명(NMR) 연구와 같은 실제 세계의 복잡한 물리 문제를 해결할 수 있는 실질적인 토대를 마련한 것으로 평가받습니다. ## 고전적 한계를 극복하는 새로운 측정 방식 * 2019년 구글이 선보인 무작위 회로 샘플링(RCS) 방식은 양자 우위를 처음 증명했으나, 결과물인 비트스트링이 실질적인 정보를 제공하기 어렵고 검증이 까다롭다는 한계가 있었습니다. * 이번 연구에서 도입한 OTOC 측정은 전류, 자화율, 밀도와 같은 '양자 기대값'을 결과로 산출하며, 이는 서로 다른 양자 컴퓨터에서도 동일하게 나타나는 검증 가능한 수치입니다. * 이러한 검증 가능성은 양자 컴퓨터가 단순히 고전 컴퓨터보다 빠르다는 것을 넘어, 실제 물리적 특성을 정확히 시뮬레이션하는 도구로 활용될 수 있음을 의미합니다. ## 양자 에코 알고리즘과 나비 효과의 응용 * '윌로우(Willow)' 퀀텀 칩의 103개 큐비트를 활용하여 시스템을 순방향($U$)으로 진화시킨 후, 특정 큐비트에 미세한 섭동($B$)을 가하고 다시 역방향($U^\dagger$)으로 되돌리는 과정을 거칩니다. * 이 과정에서 발생하는 '나비 효과'로 인해 시스템은 초기 상태와 완전히 다른 혼돈 상태에 빠지게 되며, 이를 통해 큐비트 간의 복잡한 상관관계를 추적할 수 있습니다. * 고차 OTOC로 갈수록 시스템은 간섭계와 같은 역할을 수행하며, 다체 간섭(Many-body interference) 현상을 통해 양자 신호를 증폭하거나 감쇄시킵니다. ## 양자 에르고드성 경계에서의 보강 간섭 * 실험 결과, 특정 공명 조건이 충족될 때 '보강 간섭'이 발생하여 혼돈 상태 속에 숨겨진 양자 상관관계가 증폭되는 것을 확인했습니다. * 이러한 간섭 현상은 OTOC 신호의 크기를 키워 혼돈의 영향을 일부 상쇄하고, 양자 컴퓨터가 측정 가능한 유의미한 신호를 추출할 수 있게 돕습니다. * 연구팀은 이 현상을 활용해 두 큐비트 사이의 상관관계가 어떻게 형성되는지 정밀하게 캐릭터라이징(Characterization)할 수 있음을 보여주었습니다. ## 검증 가능한 양자 우위의 달성 * 고전 컴퓨터로 103개 큐비트와 12.5 사이클 깊이의 회로에서 발생하는 OTOC를 계산하려면 지수적으로 증가하는 연산 비용이 발생하여 사실상 불가능합니다. * 양자 에코 알고리즘은 혼돈 시스템의 복잡성을 그대로 유지하면서도 그 결과값을 검증할 수 있는 통로를 제공함으로써 고전 슈퍼컴퓨터의 한계를 뛰어넘었습니다. * 이 기술은 향후 신소재 개발을 위한 해밀토니안 학습(Hamiltonian learning)이나 고온 초전도체 내의 전자 흐름 분석 등 실용적인 과학적 난제 해결에 직접 기여할 것으로 기대됩니다. 이번 성과는 양자 컴퓨터가 단순한 실험 장치를 넘어, 복잡한 양자 역학적 시스템을 탐구하고 실질적인 데이터를 산출하는 정밀한 과학 도구로서의 단계에 진입했음을 시사합니다. 향후 재료 과학이나 화학 분야에서 복잡한 양자 상태를 분석해야 할 때, 양자 에코 알고리즘은 유력한 해결책이 될 것입니다.