radar-sensing

1 개의 포스트

소비자용 초 (새 탭에서 열림)

구글 리서치는 스마트폰에 이미 탑재된 초광대역(UWB) 레이더 기술과 전이 학습(Transfer Learning)을 활용해 비접촉식으로 심박수를 측정할 수 있는 새로운 기술을 공개했습니다. 기존의 주파수 변조 연속파(FMCW) 레이더 데이터로 학습된 딥러닝 모델의 지식을 UWB 시스템에 성공적으로 이식함으로써, 별도의 추가 하드웨어 없이도 일상적인 모바일 기기에서 정밀한 건강 모니터링이 가능함을 입증했습니다. 이 기술은 호흡이나 몸의 움직임 속에서도 심장의 미세한 진동을 정확히 포착하여 개인용 헬스케어의 새로운 지평을 열 것으로 기대됩니다. **UWB 레이더를 활용한 생체 신호 감지** * UWB는 현재 스마트폰에서 주로 정밀 위치 찾기나 디지털 키 등에 사용되지만, 고유의 레이더 성능을 활용하면 심박수와 같은 활력 징후 측정이 가능합니다. * 구글은 기존 Nest Hub의 'Soli' 레이더(FMCW 방식)를 통해 축적한 방대한 데이터와 알고리즘을 UWB 환경에 적용하는 연구를 진행했습니다. * UWB는 짧은 펄스를 사용하여 거리를 측정하므로, 연속파를 사용하는 FMCW와 물리적 원리는 다르지만 딥러닝을 통해 학습된 특징(Feature)을 공유할 수 있습니다. **비접촉 측정의 한계와 시공간적 해결책** * 심박으로 인한 흉벽의 미세한 움직임은 호흡이나 일반적인 신체 움직임에 비해 매우 작아 노이즈에 묻히기 쉽습니다. * 이를 해결하기 위해 레이더의 3차원 공간 해상도를 활용하여 신체 주변에 정밀한 '측정 구역'을 설정하고 배경 노이즈를 차단합니다. * 동시에 최대 200Hz의 높은 시간 해상도로 신호를 샘플링하여 심장 박동의 빠르고 미세한 시간적 변화를 포착합니다. **딥러닝 모델 아키텍처 및 전이 학습** * 입력 데이터의 시간과 공간 축을 동시에 분석하기 위해 2D ResNet 구조를 사용하여 미세한 시공간 패턴을 추출합니다. * 이후 평균 풀링(Average Pooling)을 거쳐 공간 차원을 축소하고, 1D ResNet을 통해 시간적 차원에서 심박의 주기적 패턴을 식별합니다. * FMCW 데이터셋(980시간 분량)으로 사전 학습된 이 모델은 평균 절대 오차(MAE) 0.85 bpm을 기록하며 기존 기술 대비 오차율을 절반 수준으로 줄였습니다. * 상대적으로 적은 분량(37.3시간)의 UWB 데이터셋에서도 전이 학습을 통해 스마트폰을 책상이나 무릎에 두는 실제 환경에서 높은 정확도를 보여주었습니다. 이 연구는 추가적인 센서 부착 없이도 우리가 매일 사용하는 스마트폰만으로 고정밀 생체 신호 모니터링이 가능하다는 점을 시사합니다. 향후 웨어러블 기기의 불편함 없이 수면 중이나 명상 시, 혹은 일상적인 스마트폰 사용 중에도 실시간 건강 관리가 가능해지는 기술적 토대가 될 것입니다.