redis

3 개의 포스트

당근페이 AI Powered FDS로 가는 여정: 룰엔진구축부터 LLM 적용까지 | by HyunwooKim | 당근 테크 블로그 | Nov, 2025 | Medium (새 탭에서 열림)

당근페이는 급변하는 이상거래 패턴에 유연하게 대응하기 위해 룰엔진 중심의 FDS를 구축하고, 최근에는 LLM을 결합하여 탐지 정교화와 모니터링 효율성을 극대화하고 있습니다. 초기 룰엔진은 조건, 규칙, 정책의 계층 구조로 설계되어 실시간 탐지와 제재를 가능하게 했으며, 여기에 LLM 기반의 맥락 분석을 더해 검토 시간을 단축하고 판단의 일관성을 확보했습니다. 금융 보안 규제를 준수하면서도 최신 AI 모델을 실무에 적용해 사용자 자산을 보호하는 선도적인 FDS 운영 사례를 제시합니다. **유연한 탐지를 위한 룰엔진의 구조** * 룰엔진은 조건(빌딩 블록), 규칙(조건의 조합), 정책(규칙의 묶음)의 3단계 계층 구조로 설계되어 레고 블록처럼 탐지 로직을 조립할 수 있습니다. * '가입 후 N일 이내', '송금 횟수 N건 이상'과 같은 개별 임계값을 자유롭게 변경하며 새로운 사기 패턴에 즉각적으로 대응할 수 있는 환경을 마련했습니다. * 이벤트 유입 경로는 즉시 차단이 필요한 '동기 API'와 대량의 이벤트를 실시간으로 분석하는 '비동기 스트림'으로 분리하여 처리 효율을 높였습니다. **룰엔진 기반의 위험 평가 및 사후 처리** * 유입된 모든 거래 이벤트는 설정된 정책과 규칙에 따라 위험 평가를 거치며, 그 결과에 따라 LLM 평가, 고객 서비스팀 알람, 유저 제재 등의 후속 조치가 자동 수행됩니다. * 시스템 도입 후 실시간으로 규칙을 추가하거나 변경하며 사기 트렌드를 빠르게 반영한 결과, 금융 및 수사기관으로부터의 사기 관련 정보 요청 건수가 유의미하게 감소했습니다. * 탐지 로직의 유연화는 단순 차단을 넘어 시스템 전반의 유저 상태 동기화까지 통합적으로 관리할 수 있는 기반이 되었습니다. **LLM 도입을 통한 지능형 FDS로의 진화** * 기존의 수동 검토 방식은 건당 5~20분이 소요되고 담당자마다 판단 결과가 달라질 수 있는 한계가 있어, 이를 해결하기 위해 LLM을 통한 맥락 분석 기능을 도입했습니다. * 전자금융업의 망분리 규제 문제를 해결하기 위해 '혁신금융서비스' 지정을 받았으며, AWS Bedrock의 Claude 3.5 Sonnet 모델을 활용해 보안과 성능을 모두 잡았습니다. * BigQuery의 사기 이력을 Redis에 캐싱하고, 이를 구조화된 프롬프트(XML 태그 및 JSON 형식)에 결합하여 LLM이 사기 여부와 그 근거를 일관되게 평가하도록 설계했습니다. 효율적인 FDS 운영을 위해서는 룰 기반의 명확한 통제와 AI 기반의 유연한 맥락 분석이 조화를 이루어야 합니다. 특히 LLM을 실무에 적용할 때는 규제 준수를 위한 기술적/행정적 준비와 함께, AI가 정교한 판단을 내릴 수 있도록 단계별로 명시적이고 구조화된 프롬프트를 설계하는 과정이 무엇보다 중요합니다.

동적 사용자 분할을 활용한 새로운 A/B 테스트 시스템을 소개합니다 (새 탭에서 열림)

동적 유저 세분화(Dynamic User Segmentation) 기술을 도입한 새로운 A/B 테스트 시스템은 사용자 ID 기반의 단순 무작위 배분을 넘어 특정 속성과 행동 패턴을 가진 정교한 사용자 그룹을 대상으로 실험을 수행할 수 있게 합니다. 이 시스템은 타겟팅 엔진과 테스트 할당 로직을 분리하여 데이터 기반의 의사결정 범위를 개인화된 영역까지 확장하며, 서비스 품질 향상과 리소스 최적화라는 두 가지 목표를 동시에 달성합니다. 결과적으로 개발자와 마케터는 복잡한 사용자 시나리오에 대해 더욱 정확하고 신뢰할 수 있는 실험 데이터를 얻을 수 있습니다. ### 기존 A/B 테스트 방식과 고도화의 필요성 * **무작위 배분의 특징**: 일반적인 시스템은 사용자 ID를 해싱하여 실험군과 대조군으로 무작위 할당하며, 구현이 쉽고 선택 편향(Selection Bias)을 줄일 수 있다는 장점이 있습니다. * **타겟팅의 한계**: 전체 사용자를 대상으로 하는 일반적인 테스트에는 적합하지만, '오사카에 거주하는 iOS 사용자'처럼 특정 조건을 충족하는 집단만을 대상으로 하는 정교한 실험에는 한계가 있습니다. * **고도화된 시스템의 목적**: 사용자 세그먼트를 동적으로 정의함으로써, 서비스의 특정 기능이 특정 사용자 층에게 미치는 영향을 정밀하게 측정하기 위해 도입되었습니다. ### 유저 세분화를 위한 타겟팅 시스템 아키텍처 * **데이터 파이프라인**: HDFS에 저장된 사용자 정보(UserInfo), 모바일 정보(MobileInfo), 앱 활동(AppActivity) 등의 빅데이터를 Spark를 이용해 분석하고 처리합니다. * **세그먼트 연산**: Spark의 RDD 기능을 활용하여 합집합(Union), 교집합(Intersect), 차집합(Subtract) 등의 연산을 수행하며, 이를 통해 복잡한 사용자 조건을 유연하게 조합할 수 있습니다. * **데이터 저장 및 조회**: 처리된 결과는 `{user_id}-{segment_id}` 형태의 키-값 쌍으로 Redis에 저장되어, 실시간 요청 시 매우 낮은 지연 시간으로 해당 사용자의 세그먼트 포함 여부를 확인합니다. ### 효율적인 실험 관리와 할당 프로세스 * **설정 관리(Central Dogma)**: 실험의 설정값은 오픈 소스 설정 저장소인 Central Dogma를 통해 관리되며, 이를 통해 코드 수정 없이 실시간으로 실험 설정을 변경하고 동기화할 수 있습니다. * **할당 로직(Test Group Assigner)**: 클라이언트의 요청이 들어오면 할당기는 Central Dogma에서 실험 정보를 가져오고, Redis를 조회하여 사용자가 타겟 세그먼트에 속하는지 확인한 후 최종 실험군을 결정합니다. * **로그 및 분석**: 할당된 그룹 정보는 로그 스토어에 기록되어 사후 분석 및 대시보드 시각화의 기초 자료로 활용됩니다. ### 주요 활용 사례 및 향후 계획 * **콘텐츠 및 위치 추천**: 특정 사용자 세그먼트에 대해 서로 다른 머신러닝(ML) 모델의 성능을 비교하여 최적의 추천 알고리즘을 선정합니다. * **마케팅 및 온보딩**: 구매 빈도가 낮은 '라이트 유저'에게만 할인 쿠폰 효과를 테스트하거나, '신규 가입자'에게만 온보딩 화면의 효과를 측정하여 불필요한 비용을 줄이고 효율을 높입니다. * **플랫폼 확장성**: 향후에는 LY Corporation 내의 다양한 서비스로 플랫폼을 확장하고, 실험 생성부터 결과 분석까지 한 곳에서 관리할 수 있는 통합 어드민 시스템을 구축할 계획입니다. 이 시스템은 실험 대상자를 정교하게 선별해야 하는 복잡한 서비스 환경에서 데이터의 신뢰도를 높이는 데 매우 효과적입니다. 특히 마케팅 비용 최적화나 신규 기능의 타겟 검증이 필요한 팀이라면, 단순 무작위 할당 방식보다는 유저 세그먼트 기반의 동적 타겟팅 시스템을 구축하거나 활용하는 것을 권장합니다.

자네, 해커가 되지 않겠나? Hack Day 2025에 다녀왔습니다! (새 탭에서 열림)

LY Corporation의 'Hack Day 2025'는 19년째 이어져 온 전통 있는 사내 해커톤으로, 직무와 국적에 상관없이 구성원들이 자유롭게 아이디어를 기술로 구현하는 혁신적인 개발 문화를 상징합니다. 참가자들은 24시간 동안 몰입하여 프로토타입을 제작하며, 'Perfect the Details' 정신을 바탕으로 기술적 검증과 협업의 가치를 실현합니다. 이번 행사는 단순한 개발을 넘어 글로벌 동료들과의 네트워크를 강화하고 창의적인 시도를 장려하는 LY Corporation만의 독보적인 기술 축제로 자리매김했습니다. **자유로운 협업과 글로벌 팀 빌딩** * 과거 야후 재팬 시절부터 시작되어 19회차를 맞이한 Hack Day는 기획자, 디자이너, HR 등 사내 구성원 누구나 참여할 수 있는 열린 행사입니다. * 온/오프라인 밋업과 Zoom, Miro 등의 툴을 활용해 한국, 일본, 대만, 베트남 등 다양한 국가의 멤버들이 'Global Mixed Team'을 구성하여 협업합니다. * 하이브리드 워크 환경에 맞춰 이동 시간 및 업무 집중 시간을 보장하는 'Travel Day' 제도를 통해 원격 근무자들이 오프라인에서 밀도 있게 협업할 수 있는 환경을 제공합니다. **몰입을 돕는 환경과 해커톤의 문화** * 행사 기간 동안 오피스의 한 층을 통째로 사용하며, 팀별 독립 공간과 화이트보드, 모니터 등 개발에 필요한 인프라를 전폭적으로 지원합니다. * 1일 차 오전 9시, 전 참가자가 모여 "Hack Time!"을 외치는 개회 선언을 통해 행사의 본격적인 시작을 알리는 전통이 있습니다. * 에너지 소모가 큰 해커톤 특성을 고려하여 시간대별로 도넛, 컵라면 등 다양한 간식과 전 세계 법인에서 가져온 이색 먹거리를 무제한 제공하여 개발에만 집중할 수 있게 돕습니다. **AI 모델을 활용한 기술적 실천과 유연한 피보팅** * 실제 프로젝트 사례로 Slack 커뮤니케이션 기록과 AI 모델을 결합해 개개인의 협업 성향을 분석하는 '전투력 측정' 프로그램을 개발했습니다. * 성격 심리학 모델인 'Big 5 Personality'를 도입하여 데이터의 신뢰성을 확보하고, 이를 게임 캐릭터 능력치처럼 시각화하여 재미 요소를 더했습니다. * 개발 마지막 단계에서 포토 프린터 하드웨어 장애라는 변수가 발생하자, 실물 카드 출력 대신 파일 다운로드 방식으로 기획을 신속하게 변경하며 해커톤 특유의 유연한 문제 해결 능력을 발휘했습니다. **성과 공유를 위한 90초 발표와 부스 운영** * 3일 차에는 각 팀이 결과물을 공유하며, 90초라는 엄격한 시간 제한 속에서 핵심 기능과 데모를 선보이는 '라이브 피칭'을 진행합니다. * 발표 후에는 별도의 부스 운영 시간을 통해 심사위원과 다른 참가자들이 직접 서비스를 체험해 보고 기술적인 디테일에 대해 심도 있는 질의응답을 나눕니다. * 창의성, 기술적 완성도, 발표 전달력을 종합적으로 평가하여 시상하며, 이를 통해 사내 기술 트렌드를 공유하고 성취감을 고취합니다. Hack Day와 같은 사내 해커톤은 일상적인 업무에서 벗어나 최신 기술(AI 등)을 실험하고 동료와의 유대감을 쌓을 수 있는 최고의 기회입니다. 기술적 성장에 목마른 조직이라면, 결과물의 완벽함보다는 24시간 동안의 몰입 경험과 그 과정에서 발생하는 유쾌한 시행착오를 장려하는 문화를 구축해 보길 추천합니다.