주 기반의 확장 가능한 AI 인프 (새 탭에서 열림)
구글의 '프로젝트 선캐처(Project Suncatcher)'는 지상의 자원 제약을 넘어 AI 연산 능력을 극대화하기 위해 태양광 기반 위성 네트워크에 TPU를 탑재하는 우주 기반 AI 인프라 설계를 제안합니다. 이 프로젝트는 태양 에너지가 지상보다 월등히 효율적인 우주 환경에서 데이터 센터급 대역폭과 고성능 연산 장치를 결합하여 지속 가능하고 확장성 있는 머신러닝 인프라를 구축하는 것을 목표로 합니다. 초기 연구 결과, 초고속 광통신과 정밀한 궤도 제어, 최신 TPU의 방사선 내성 검증을 통해 이러한 야심 찬 구상이 기술적으로 실현 가능함을 확인했습니다. **우주 기반 AI 인프라의 당위성** * 지상 대비 최대 8배 높은 태양광 발전 효율과 배터리 의존도를 낮추는 일출-일몰 태양 동기 궤도(Sun-synchronous orbit)를 활용하여 전력을 거의 연속적으로 공급받을 수 있습니다. * 지구의 자원 사용을 최소화하면서도 100조 배 이상의 잠재적 에너지원을 가진 태양을 직접 활용하여 AI 학습의 규모를 확장할 수 있는 새로운 지평을 제시합니다. * 소형 위성들을 모듈식으로 연결하여 지능형 성단(Constellation)을 형성함으로써 지상 데이터 센터 수준의 성능을 구현하는 초거대 AI 클러스터를 지향합니다. **데이터 센터급 초고속 위성 간 광통신** * 대규모 머신러닝 작업을 수행하기 위해 위성 간 통신(ISL)에서 지상 데이터 센터와 대등한 수십 Tbps급 대역폭 확보가 필수적이며, 이를 위해 DWDM(고밀도 파장 분할 다중화) 및 공간 다중화 기술을 적용합니다. * 신호 감쇄 문제를 해결하기 위해 위성들을 수 킬로미터 이내의 초근접 거리에서 군집 비행시켜 전력 효율적인 링크 버젯(Link budget)을 확보하는 전략을 사용합니다. * 벤치마크 테스트 결과, 단일 송수신기 쌍으로 양방향 총 1.6 Tbps 전송 속도를 구현하는 데 성공하며 기술적 타당성을 입증했습니다. **정밀한 위성 군집 제어 및 궤도 역학** * 수백 미터 간격을 유지하는 고밀도 위성 군집을 제어하기 위해 Hill-Clohessy-Wiltshire 방정식과 JAX 기반의 미분 가능한 수치 모델을 결합하여 정밀한 물리 시뮬레이션을 수행했습니다. * 지구의 비구형 중력장과 대기 항력 등 궤도에 영향을 주는 섭동 요인을 계산한 결과, 최소한의 기동만으로도 안정적인 태양 동기 궤도 유지가 가능함을 확인했습니다. * 81개의 위성으로 구성된 클러스터 모델링을 통해 위성 간 충돌 없이 밀집 대형을 유지하며 지속적인 통신 연결성을 확보할 수 있음을 보여주었습니다. **TPU의 우주 환경 내구성 및 안정성** * 구글의 6세대 Cloud TPU인 '트릴리움(Trillium)'을 대상으로 67MeV 양성자 빔 조사를 실시하여 우주 방사선에 의한 총 이온화 선량(TID) 및 단일 사건 효과(SEE)를 테스트했습니다. * 우주 환경에서 머신러닝 가속기가 안정적으로 작동할 수 있는지에 대한 초기 실험 결과는 긍정적이며, 이는 상용 칩 기반의 우주 컴퓨팅 가능성을 시사합니다. 이 연구는 아직 초기 단계의 '문샷(Moonshot)' 프로젝트이지만, 우주라는 새로운 공간을 활용해 AI 기술의 물리적 한계를 돌파하려는 혁신적인 시도입니다. 향후 우주 기반 AI 인프라가 실현된다면 에너지 효율과 연산 성능을 획기적으로 높여 인류가 직면한 거대한 도전 과제들을 해결하는 강력한 도구가 될 것입니다.