search-engine

2 개의 포스트

당근 검색 엔진, 쿠버네티스로 쉽게 운영하기 2편 — 데이터 노드 웜업 적용 | by Dongsun Shin | 당근 테크 블로그 | Dec, 2025 | Medium (새 탭에서 열림)

당근 검색 플랫폼팀은 쿠버네티스(ECK) 환경에서 Elasticsearch 클러스터를 운영하며, 롤링 리스타트 시 발생하는 레이턴시 급증 문제를 해결하기 위해 '데이터 노드 웜업(Warmup)' 시스템을 구축했습니다. 단순히 Pod가 실행되는 것을 넘어 샤드 복구와 캐시 예열이 완료된 후에만 다음 노드를 재시작하도록 제어함으로써, 피크 타임에도 서비스 영향 없이 안정적인 배포가 가능해졌습니다. 이를 통해 운영자의 모니터링 부담을 제거하고 언제든 안심하고 배포할 수 있는 환경을 마련했습니다. **롤링 리스타트와 콜드 캐시의 위험성** * Elasticsearch는 페이지 캐시, 쿼리 캐시 등 다양한 메모리 캐시에 크게 의존하므로, 재시작 직후 캐시가 비어 있는 '콜드 캐시' 상태에서는 성능이 급격히 저하됩니다. * 쿠버네티스의 기본 롤링 업데이트는 Pod의 준비 상태(Ready)만 확인하고 다음 노드를 재시작하기 때문에, 준비되지 않은 노드에 트래픽이 몰리며 전체 검색 레이턴시가 수 초까지 치솟는 장애가 발생할 수 있습니다. * 노드 한 대가 내려간 동안 남은 노드들이 모든 부하를 감당해야 하며, 복제본(Replica) 샤드가 없는 상태에서 다른 노드에 문제가 생기면 클러스터가 'Red' 상태로 변해 가용성이 무너질 위험이 큽니다. **안전한 배포를 위한 단계별 웜업 전략** * 목표는 배포 중에도 P99 레이턴시를 평소 수준으로 유지하고, 클러스터 상태가 'Yellow'에서 다시 'Green'이 된 것을 확인한 후 다음 단계로 넘어가는 것입니다. * 이를 위해 노드 재시작 후 세 가지 단계를 거칩니다: 1) 데이터 노드가 클러스터에 정상 합류할 때까지 대기, 2) 할당된 샤드들의 데이터 복구(Recovery) 완료 확인, 3) 실제 검색 쿼리를 미리 실행하여 캐시를 채우는 과정입니다. * 특히 샤드 복구가 완료되지 않은 상태에서 웜업을 시작하면 데이터가 없는 상태에서 쿼리를 날리는 꼴이 되므로, 반드시 인덱싱 상태를 모니터링하는 로직이 포함되어야 합니다. **사이드카 패턴 기반의 웜업 시스템 구현** * Elasticsearch 컨테이너와 함께 실행되는 별도의 `warmup-sidecar`를 도입하여 노드의 상태를 정밀하게 추적합니다. * 사이드카는 API를 통해 해당 노드의 샤드들이 모두 'Started' 상태인지 확인하고, 실제 운영 환경에서 발생하는 검색 트래픽(Traffic Replay)을 신규 노드에 미리 쏘아주어 메모리에 데이터를 올립니다. * 이 모든 과정이 완료되어야만 쿠버네티스의 Readiness Probe를 통과하게 설계하여, ECK 오퍼레이터가 노드 웜업이 끝날 때까지 다음 Pod의 재시작을 자동으로 대기하도록 제어했습니다. 대규모 트래픽을 처리하는 상태 기반(Stateful) 시스템에서는 인프라 수준의 단순한 헬스체크만으로는 부족하며, 애플리케이션 내부의 데이터 준비 상태를 고려한 정교한 배포 전략이 필수적입니다. 데이터 노드 웜업 도입으로 배포 시간은 기존보다 길어졌지만, 시간에 구애받지 않고 24시간 언제든 안전하게 시스템을 업데이트할 수 있는 운영 안정성을 확보하게 되었습니다.

경험이 쌓일수록 똑똑해지는 네이버 통합검색 LLM Devops Agent (새 탭에서 열림)

네이버 통합검색은 서비스 복잡도가 급증함에 따라 발생하는 장애 대응의 한계를 극복하기 위해 LLM 기반의 DevOps 에이전트를 도입했습니다. 이 에이전트는 단순히 장애 알람을 전달하는 수준을 넘어, 시스템 메트릭과 로그를 스스로 분석하고 최적의 조치 방안을 추천하며 경험을 통해 지속적으로 진화합니다. 결과적으로 복잡한 검색 인프라 운영의 효율성을 극대화하고 장애 복구 시간(MTTR)을 단축하는 것을 목표로 합니다. **기존 장애 대응 프로세스의 한계** * 네이버 검색은 수많은 마이크로서비스가 복잡하게 얽혀 있어, 장애 발생 시 원인을 파악하기 위해 확인해야 할 메트릭과 로그의 양이 방대합니다. * 기존의 룰 기반(Rule-based) 시스템은 정해진 규칙 외의 변칙적인 장애 상황에 유연하게 대응하기 어렵고, 운영자의 숙련도에 따라 대응 속도 차이가 크게 발생했습니다. * 장애 상황마다 산재한 데이터를 수동으로 취합하고 분석하는 과정에서 발생하는 인지적 부하와 시간 지연이 주요 해결 과제로 대두되었습니다. **Devops Agent의 구조적 진화 (v1에서 v2로)** * **v1 설계 및 한계:** 초기 버전은 기본적인 데이터 수집과 리포팅 자동화에 집중했으나, 다양한 인프라 환경에서 발생하는 복합적인 컨텍스트를 LLM이 완벽히 이해하고 추론하기에는 한계가 있었습니다. * **v2 구조 개선:** v1의 한계를 극복하기 위해 Agentic Workflow를 강화하여, 에이전트가 상황에 따라 필요한 도구(Tools)를 스스로 선택하고 분석 단계를 세분화하여 실행하도록 재설계했습니다. * **SW Stack 고도화:** 최신 LLM 프레임워크와 네이버의 인프라 데이터를 효율적으로 결합하여, 실시간으로 변화하는 시스템 상태를 에이전트가 즉각적으로 파악할 수 있는 기반을 마련했습니다. **시스템 동작과 이상 탐지 메커니즘** * **Trigger Queue:** 모든 장애 징후와 알람을 큐(Queue) 시스템으로 관리하여 분석의 우선순위를 정하고, 누락 없는 대응이 가능하도록 설계했습니다. * **이상 탐지(Anomaly Detection):** 단순 임계치 기반 알람이 아니라, 통계적 모델과 AI를 활용해 평상시 패턴에서 벗어나는 이상 현상을 정교하게 포착합니다. * **평가 체계:** 에이전트가 내놓은 분석 결과와 추천 액션의 정확도를 지속적으로 평가하며, 실제 엔지니어의 피드백을 학습 데이터로 환류시켜 분석 품질을 높입니다. **지속 가능한 DevOps를 위한 향후 과제** * **컨텍스트 확대:** 장애 당시의 로그뿐만 아니라 배포 이력, 설정 변경 내역 등 더 넓은 범위의 데이터를 연동하여 분석의 정확도를 높이고 있습니다. * **액션 추천 및 자동화:** 장애 원인 분석을 넘어 "특정 서버 그룹의 트래픽을 차단하라"와 같이 구체적인 실행 코드를 생성하거나 직접 조치하는 단계로 확장 중입니다. * **지속 가능한 학습:** 새로운 유형의 장애가 발생할 때마다 이를 지식화하여 에이전트가 다음번 유사 사례에서 더 똑똑하게 대응할 수 있는 선순환 구조를 구축하고 있습니다. 이 시스템은 인프라 운영자가 반복적인 데이터 취합 업무에서 벗어나 의사결정과 문제 해결에만 집중할 수 있는 환경을 제공합니다. LLM 에이전트의 도입은 단순한 도구 활용을 넘어, 대규모 시스템 운영 노하우를 데이터화하고 지능화된 자동화로 전환하는 중요한 기술적 이정표가 될 것입니다.