slack-bolt

1 개의 포스트

문의 대응을 효율화하기 위한 RAG 기반 봇 도입하기 (새 탭에서 열림)

LY 주식회사의 SR(Service Reliability) 팀은 반복되는 AWX 플랫폼 관련 문의를 효율적으로 처리하기 위해 RAG(검색 증강 생성) 기반의 지원 봇을 도입했습니다. 이 시스템은 사용자가 방대한 가이드 문서를 읽지 않고 중복된 질문을 던질 때 발생하는 운영 리소스 소모 문제를 해결하기 위해 고안되었습니다. 사내 위키와 과거 상담 이력을 활용해 정확도 높은 답변을 생성함으로써 관리자의 개입 없이도 사용자 문제를 신속하게 해결하는 성과를 거두었습니다. **AWX 지원 봇의 기술 스택 및 구성** - **LLM 및 프레임워크:** OpenAI의 GPT 모델을 메인 엔진으로 사용하며, LangChain 프레임워크를 통해 전체적인 워크플로를 관리합니다. Slack과의 연동은 Bolt for Python을 활용했습니다. - **임베딩 모델:** 다국어 지원 및 문장 비교 성능이 뛰어난 'paraphrase-multilingual-mpnet-base-v2' 모델(SBERT)을 선택하여 글로벌 임직원의 다양한 언어 문의에 대응합니다. - **벡터 데이터베이스:** 사내에서 PaaS 형태로 제공되어 접근성이 높은 OpenSearch를 사용하며, 텍스트 데이터를 고차원 벡터로 변환하여 저장하고 검색합니다. **RAG 및 벡터 검색을 통한 답변 정확도 향상** - **LLM의 한계 극복:** 학습되지 않은 최신 정보 부재나 허위 정보 생성(Hallucination) 문제를 해결하기 위해, 질문과 관련된 신뢰할 수 있는 컨텍스트를 LLM에 함께 전달하는 RAG 기법을 적용했습니다. - **벡터 검색 원리:** 사용자의 질문을 임베딩하여 벡터화한 뒤, 벡터 DB 내에서 의미적으로 유사한 문장들을 k-NN(최근접 이웃) 방식으로 검색하여 최적의 참고 자료를 추출합니다. - **유사도 기반 추출:** 단순 키워드 매칭이 아닌 의미적 유사성을 판단하므로, 'Buy'와 'Purchase'처럼 단어는 달라도 맥락이 같은 정보를 정확히 찾아낼 수 있습니다. **봇 워크플로 및 데이터 활용 전략** - **사용자 상호작용:** 사용자가 Slack으로 문의하면 봇이 사내 위키와 과거 Slack 스레드 데이터를 검색합니다. 추출된 데이터를 바탕으로 LLM이 1차 답변을 제공하며, 해결되지 않을 경우에만 '관리자 호출' 버튼을 통해 담당자를 연결합니다. - **데이터 소스 다각화:** 공식 가이드 문서뿐만 아니라 실제 사용자들이 겪었던 문제와 해결책이 담긴 'Slack 문의 스레드 데이터'를 함께 인덱싱하여 실무적인 답변이 가능하도록 구성했습니다. - **리소스 최적화:** 봇의 자동 응답을 통해 단순 반복 문의에 대한 관리자의 수동 대응 시간을 줄이고, 개발 조직이 서비스 운영 본연의 업무에 더 집중할 수 있는 환경을 조성했습니다. RAG 기반 시스템을 구축할 때 가장 중요한 것은 신뢰할 수 있는 데이터 소스의 확보입니다. LY의 사례처럼 공식 문서와 실제 상담 이력을 병행 활용하면 LLM이 훨씬 구체적이고 실무에 유효한 답변을 생성할 수 있습니다. 운영 중인 서비스의 문의 대응 리소스가 부담된다면, 익숙한 벡터 DB와 오픈소스 임베딩 모델을 조합한 RAG 봇 도입을 적극 추천합니다.