spring-boot

1 개의 포스트

Scaling Muse: 조 단위 로우 (새 탭에서 열림)

넷플릭스의 내부 데이터 분석 플랫폼인 'Muse'는 수조 건 규모의 데이터를 분석하여 홍보용 미디어(아트웍, 영상 클립)의 효과를 측정하고 창작 전략을 지원합니다. 급증하는 데이터 규모와 복잡한 다대다(Many-to-Many) 필터링 요구사항을 해결하기 위해, 넷플릭스는 HyperLogLog(HLL) 스케치와 인메모리 기술인 Hollow를 도입하여 데이터 서빙 레이어를 혁신했습니다. 이를 통해 데이터 정확도를 유지하면서도 수조 행의 데이터를 실시간에 가깝게 처리할 수 있는 고성능 OLAP 환경을 구축했습니다. ### 효율적인 고유 사용자 집계를 위한 HLL 스케치 도입 * **근사치 계산을 통한 성능 최적화:** 고유 사용자 수(Distinct Count)를 계산할 때 발생하는 막대한 리소스 소모를 줄이기 위해 Apache Datasketches의 HLL 기술을 도입했습니다. 약 0.8%~2%의 미세한 오차를 허용하는 대신 집계 속도를 비약적으로 높였습니다. * **단계별 스케치 생성:** Druid 데이터 수집 단계에서 '롤업(Rollup)' 기능을 사용해 데이터를 사전 요약하고, Spark ETL 과정에서는 매일 생성되는 HLL 스케치를 기존 데이터와 병합(hll_union)하여 전체 기간의 통계를 관리합니다. * **데이터 규모 축소:** 수개월에서 수년 치의 데이터를 전수 비교하는 대신, 미리 생성된 스케치만 결합하면 되므로 데이터 처리량과 저장 공간을 획기적으로 절감했습니다. ### Hollow를 활용한 인메모리 사전 집계 및 서빙 * **초저지연 조회 구현:** 모든 쿼리를 Druid에서 처리하는 대신, 자주 사용되는 '전체 기간(All-time)' 집계 데이터는 넷플릭스의 오픈소스 기술인 'Hollow'를 통해 인메모리 방식으로 서빙합니다. * **Spark와 마이크로서비스의 연계:** Spark 작업에서 미리 계산된 HLL 스케치 집계 데이터를 Hollow 데이터셋으로 발행하면, Spring Boot 기반의 마이크로서비스가 이를 메모리에 로드하여 밀리초(ms) 단위의 응답 속도를 제공합니다. * **조인(Join) 병목 해결:** 복잡한 시청자 성향(Audience Affinity) 필터링과 같은 다대다 관계 연산을 메모리 내에서 처리함으로써 기존 아키텍처의 한계를 극복했습니다. ### 데이터 검증 및 아키텍처 현대화 * **신뢰성 보장:** 아키텍처 변경 전후의 데이터 정합성을 확인하기 위해 내부 디버깅 도구를 활용하여 사전/사후 데이터를 정밀하게 비교 검증했습니다. * **기술 스택 고도화:** React 프런트엔드와 GraphQL 레이어, 그리고 gRPC 기반의 Spring Boot 마이크로서비스 구조를 통해 확장성 있는 시스템을 구축했습니다. * **분석 역량 강화:** 이를 통해 단순한 대시보드를 넘어 이상치 감지(Outlier Detection), 미디어 간 성과 비교, 고급 필터링 등 사용자들의 고도화된 분석 요구를 수용할 수 있게 되었습니다. 대규모 OLAP 시스템을 설계할 때 모든 데이터를 실시간으로 전수 계산하기보다는, HLL과 같은 확률적 자료구조와 Hollow 기반의 인메모리 캐싱을 적절히 조합하는 것이 성능 최적화의 핵심입니다. 특히 수조 건 규모의 데이터에서는 완벽한 정확도와 성능 사이의 트레이드오프를 전략적으로 선택하는 것이 시스템의 유연성을 결정짓습니다.