sre

3 개의 포스트

DrP: 대규모 환경을 위한 (새 탭에서 열림)

Meta가 개발한 **DrP(Root Cause Analysis platform)**는 대규모 시스템에서 발생하는 장애 조사 과정을 프로그래밍 방식으로 자동화하여 평균 복구 시간(MTTR)을 혁신적으로 단축하는 플랫폼입니다. 기존의 수동 조사와 노후화된 플레이북이 유발하는 온콜(On-call) 엔지니어의 피로도 문제를 해결하기 위해, 분석 로직을 코드로 작성하고 실행할 수 있는 통합 환경을 제공합니다. 현재 Meta 내 300개 이상의 팀에서 매일 5만 건 이상의 분석을 수행하며, 장애 복구 시간을 20%에서 최대 80%까지 줄이는 성과를 내고 있습니다. ### DrP의 핵심 구성 요소 * **표현력이 풍부한 SDK**: 엔지니어가 조사 워크플로우를 '분석기(Analyzer)'라는 코드로 구현할 수 있게 돕습니다. 이상 탐지, 시계열 상관관계 분석, 차원 분석 등 복잡한 데이터 분석을 위한 머신러닝 알고리즘과 헬퍼 라이브러리를 포함합니다. * **확장 가능한 백엔드**: 수만 건의 분석을 동시에 처리할 수 있는 멀티 테넌트 실행 환경을 제공하며, 각 분석 작업이 안전하게 격리되어 실행되도록 보장합니다. * **워크플로우 통합 및 후처리**: 알림(Alert) 시스템 및 장애 관리 도구와 긴밀하게 통합되어 장애 발생 시 자동으로 분석을 시작합니다. 분석 후에는 티켓 생성이나 코드 수정 요청(PR)과 같은 후속 조치를 자동으로 수행하는 기능도 갖추고 있습니다. ### 분석기(Analyzer)의 작성 및 실행 흐름 * **코드 기반 플레이북 작성**: 엔지니어는 SDK를 사용하여 장애 조사의 의사결정 트리를 코드로 작성합니다. 이 과정에서 종속된 서비스들의 분석기를 서로 연결(Chaining)하여 복합적인 장애 원인을 추적할 수 있습니다. * **자동화된 검증**: 작성된 분석기는 배포 전 코드 리뷰 도구와 통합된 백테스트(Backtesting) 과정을 거쳐 품질과 신뢰성을 검증받습니다. * **즉각적인 통찰력 제공**: 장애가 감지되면 DrP 백엔드가 즉시 분석기를 가동합니다. 온콜 엔지니어는 장애 알림을 받는 동시에 시스템이 이미 분석해 놓은 근본 원인과 권장 조치 사항을 확인할 수 있습니다. ### 도입 효과 및 운영 가치 * **MTTR의 획기적 단축**: 수동으로 몇 시간씩 걸리던 데이터 수집과 분류 작업을 자동화함으로써 장애 복구 속도를 가속화하고 시스템 가용성을 높입니다. * **온콜 생산성 향상**: 반복적이고 소모적인 디버깅 작업을 기계가 대신 처리하게 함으로써 엔지니어가 더 복잡하고 가치 있는 문제 해결에 집중할 수 있게 합니다. * **조사의 일관성 확보**: 개인의 숙련도에 의존하던 조사 방식을 코드화된 워크플로우로 표준화하여, 어떤 엔지니어가 대응하더라도 동일한 수준의 고품질 분석 결과를 얻을 수 있습니다. **결론적으로**, DrP는 대규모 마이크로서비스 환경에서 발생하는 복잡한 장애를 해결하기 위해 '운영의 코드화'를 실현한 사례입니다. 시스템 규모가 커짐에 따라 수동 대응의 한계를 느끼는 조직이라면, DrP와 같은 자동화된 RCA 플랫폼을 도입하여 인프라의 안정성과 엔지니어의 생산성을 동시에 확보하는 전략이 권장됩니다.

우아한형제들이 장애를 놓치지 않고 탐지하는 방법 | 우아한형제들 기술블로그 (새 탭에서 열림)

우아한형제들은 시스템 장애로 인한 고객 불편을 최소화하기 위해 서비스 지표 중심의 '서비스 이상 탐지 시스템'을 구축했습니다. 전통적인 인프라 모니터링의 사각지대를 보완하고자 실시간 데이터 예측과 임계치 관리 메커니즘을 도입했으며, 이를 통해 장애 탐지 속도와 대응 효율성을 동시에 확보했습니다. **서비스 지표 중심의 이상 탐지 필요성** * CPU, 메모리 사용률 등 전통적인 시스템 지표 모니터링만으로는 모든 장애 구간을 완벽하게 커버하기 어렵고 사각지대가 발생할 수밖에 없습니다. * 반면 주문 수, 결제 성공률 등 서비스 지표는 사용자 경험을 직접적으로 반영하며, 지표의 종류가 한정적이라 최소한의 관리로도 높은 탐지 효율을 낼 수 있습니다. * 서비스 이상 탐지 시스템은 장애가 발생했을 때 사용자 영향이 지표 변화로 나타나는 즉시 이를 포착하는 것을 목표로 합니다. **중앙값(Median) 기반의 탐지 기법 설계** * 배달 서비스 특성상 점심과 저녁 시간에 주문이 집중되는 선명한 패턴이 존재하므로, 과거 데이터를 통해 정상 범위를 비교적 쉽게 예측할 수 있습니다. * 분석의 용이성과 이상치(Outlier)에 대한 강건함을 확보하기 위해 IQR이나 2-sigma 대신 직관적인 중앙값(Median) 방식을 채택했습니다. * 복잡한 AI 모델을 사용하기보다 빠르게 구현하고 개선할 수 있는 구조를 선택하여 원인 분석과 시스템 업데이트의 속도를 높였습니다. **정확도 향상을 위한 임계 도달 횟수 관리** * 실시간으로 수집되는 실제값(Actual)이 예측된 임계값(Warning, Critical)에 도달할 때 장애를 판단합니다. * 일시적인 지표 튀기 현상으로 인한 오탐(False Positive)을 방지하기 위해, 임계값에 특정 횟수 이상 연속으로 도달했을 때만 경보를 발생시키는 '임계 도달 횟수'를 관리합니다. * 탐지 속도(낮은 횟수 설정)와 정확도(높은 횟수 설정) 사이의 트레이드오프를 고려하여 각 지표의 성격에 맞는 최적의 안정화 기간을 거칩니다. **신속한 대응을 위한 경보 및 프로세스 연계** * 장애 탐지 시 슬랙(Slack) 채널로 지표 현황, 긴급도, 그래프가 포함된 경보를 즉시 발송하여 상황 파악을 돕습니다. * 단순히 알림을 보내는 데 그치지 않고, 장애 숙련도와 관계없이 누구나 표준화된 절차에 따라 대응할 수 있도록 후속 프로세스 가이드를 함께 제공합니다. 장애는 완벽히 막을 수 없지만 탐지 시간은 단축할 수 있습니다. 복잡한 알고리즘에 매몰되기보다 서비스의 비즈니스 패턴을 명확히 분석하고, 가장 직관적인 지표와 통계 모델을 적용하는 것이 실무적인 관점에서는 훨씬 강력한 장애 대응 체계를 만드는 방법입니다.

처음 만나는 OpenTelemetry (feat. Collector) (새 탭에서 열림)

OpenTelemetry(OTel)는 클라우드 네이티브 환경에서 메트릭, 트레이스, 로그를 통합 관리하기 위한 오픈소스 표준 프레임워크로, 특정 벤더에 종속되지 않는 관측 가능성(Observability) 구축을 가능하게 합니다. 네이버는 기존 검색 모니터링 플랫폼 'SEER'를 OTel 및 오픈소스 기반으로 전환하면서 데이터 수집 효율성을 높이고 유연한 파이프라인을 확보했습니다. 특히 OTel Collector의 도입은 데이터 수집부터 가공, 전송에 이르는 전 과정을 표준화하여 운영 복잡도를 획기적으로 낮추는 결론에 도달했습니다. ### 데이터 중계의 핵심, OpenTelemetry Collector * Collector는 애플리케이션과 백엔드 사이에서 데이터를 수집, 처리, 전달하는 공급업체 불가지론적(Vendor-agnostic) 프록시 역할을 수행합니다. * 애플리케이션은 Collector에 데이터를 보내기만 하면 되므로, 백엔드 저장소가 변경되더라도 애플리케이션 코드를 수정할 필요가 없어 결합도가 낮아집니다. * 로컬 호스트나 별도의 게이트웨이 방식으로 배포할 수 있어 시스템 환경에 따른 유연한 아키텍처 구성이 가능합니다. ### 수집부터 전송까지의 파이프라인 구성 * **Receiver**: OTLP, Prometheus, Kafka 등 다양한 프로토콜로부터 데이터를 수집하며, 푸시(Push) 또는 풀(Pull) 방식을 모두 지원합니다. * **Processor**: 수집된 데이터를 백엔드로 보내기 전 가공하는 단계로, 배치 처리(Batch)를 통한 전송 효율화, 메모리 부족 방지(Memory Limiter), 민감 정보 필터링 등을 수행합니다. * **Exporter**: 처리된 데이터를 하나 이상의 백엔드 시스템(Elasticsearch, Jaeger, Prometheus 등)으로 전송하며, 여러 목적지로 동시에 데이터를 복제해 보낼 수도 있습니다. ### OTLP 프로토콜과 표준화의 이점 * OTLP(OpenTelemetry Protocol)는 gRPC 또는 HTTP를 사용하여 텔레메트리 데이터를 전송하는 OTel의 표준 프로토콜입니다. * 서로 다른 도구와 플랫폼 간의 상호운용성을 보장하며, 데이터 구조가 규격화되어 있어 분석 및 시각화 도구 선택의 폭이 넓어집니다. * 확장성이 뛰어난 바이너리 포맷을 사용하여 네트워크 대역폭 사용량을 최적화합니다. ### Kubernetes 환경에서의 효율적 운영, Operator * OpenTelemetry Operator를 사용하면 Kubernetes 환경에서 Collector의 배포 및 관리, 업데이트를 자동화할 수 있습니다. * 타겟 애플리케이션에 OTel 에이전트를 자동으로 주입(Injection)하는 기능을 제공하여 개발자의 번거로움을 줄여줍니다. * Collector의 설정(Config) 변경 시 사용자 정의 리소스(CRD)를 통해 선언적으로 관리할 수 있어 안정적인 운영이 가능합니다. ### 오픈소스 기여를 통한 기술 성숙도 강화 * 네이버는 실제 운영 환경에서 발견한 버그를 수정하고 필요한 기능을 제안하며 OpenTelemetry 커뮤니티에 적극적으로 기여하고 있습니다. * 오픈소스 생태계에 참여함으로써 단순히 기술을 소비하는 것을 넘어, 자사에 최적화된 기능을 표준에 반영하고 기술적 리더십을 확보하는 선순환 구조를 만들고 있습니다. **실용적인 제언** 모니터링 시스템의 확장성과 유연성을 고민하고 있다면, 처음부터 모든 것을 구축하기보다 **OpenTelemetry Collector**를 먼저 도입하여 데이터 파이프라인을 표준화할 것을 추천합니다. 이는 추후 분석 도구나 저장소를 교체할 때 발생하는 비용을 최소화하고, 분산 환경에서 발생하는 복잡한 데이터 흐름을 한곳에서 제어할 수 있는 가장 강력한 방법입니다.