stream-processing

1 개의 포스트

넷플릭스가 실 (새 탭에서 열림)

넷플릭스는 비디오 스트리밍을 넘어 광고, 라이브 이벤트, 모바일 게임으로 비즈니스를 확장하면서 발생하는 데이터 파편화 문제를 해결하기 위해 '실시간 분산 그래프(RDG)'를 구축했습니다. 기존 마이크로서비스 아키텍처에서 발생하는 데이터 고립을 극복하고, 다양한 서비스 접점에서 발생하는 사용자 활동을 실시간으로 연결하여 개인화된 경험을 제공하는 것이 핵심 목표입니다. 이를 통해 복잡한 데이터 조인 없이도 수억 개의 노드와 엣지 사이의 관계를 즉각적으로 파악할 수 있는 기술적 기반을 마련했습니다. **데이터 파편화와 비즈니스 환경의 변화** * 스트리밍, 게임, 라이브 스포츠 등 서비스 영역이 넓어지면서 사용자가 여러 기기와 도메인에서 수행하는 활동을 하나의 맥락으로 통합해야 할 필요성이 커짐. * 넷플릭스의 강점인 마이크로서비스 아키텍처(MSA)는 서비스 독립성에는 유리하지만, 데이터가 각 서비스에 고립(Silo)되어 있어 통합적인 데이터 과학 및 엔지니어링 작업에 큰 비용이 발생함. * 기존 데이터 웨어하우스 방식은 데이터가 서로 다른 테이블에 저장되고 처리 주기가 제각각이라, 실시간으로 연관 관계를 분석하는 데 한계가 있음. **그래프 모델 도입의 기술적 이점** * **관계 중심 쿼리:** 테이블 기반 모델에서 필요한 비용 중심적인 조인(Join)이나 수동적인 비정규화 없이도 노드와 엣지 사이를 빠르게 탐색(Hop)할 수 있음. * **유연한 확장성:** 새로운 엔티티나 관계 유형이 추가될 때 대대적인 스키마 변경이나 아키텍처 재설계 없이도 신속하게 데이터 모델을 확장할 수 있음. * **패턴 및 이상 탐지:** 숨겨진 관계, 순환(Cycle) 구조, 그룹화 등을 식별하는 작업을 기존의 포인트 조회 방식보다 훨씬 효율적으로 수행함. **실시간 데이터 수집 및 처리 파이프라인 (RDG 레이어 1)** * 전체 시스템은 수집 및 처리, 저장, 서빙의 3개 레이어로 구성되며, 첫 번째 단계인 수집 레이어는 이기종 업스트림 소스로부터 이벤트를 받아 그래프 데이터를 생성함. * DB의 변경 사항을 추적하는 CDC(Change Data Capture)와 애플리케이션의 실시간 로그 이벤트를 주요 소스로 활용하여 데이터 소외 현상을 방지함. * 수집된 원시 데이터는 스트리밍 처리 엔진을 통해 그래프 스키마에 맞는 노드와 엣지 형태로 변환되며, 대규모 트래픽 환경에서도 실시간성을 유지하도록 설계됨. 복잡하게 얽힌 현대의 서비스 환경에서 데이터 간의 관계를 실시간으로 규명하는 것은 사용자 경험 고도화의 핵심입니다. 넷플릭스의 RDG 사례처럼 파편화된 마이크로서비스의 데이터를 그래프 형태로 통합하는 접근 방식은, 실시간 통찰력이 필요한 대규모 분산 시스템 설계 시 강력한 해결책이 될 수 있습니다.