synthetic-data

3 개의 포스트

사진 한 장은 천 마디 ( (새 탭에서 열림)

구글 리서치(Google Research)는 차분 프라이버시(Differential Privacy, DP) 기술을 적용하여 데이터의 프라이버시를 완벽히 보호하면서도, 사진 앨범과 같이 복잡한 구조를 가진 합성 데이터를 생성하는 새로운 방법론을 제시했습니다. 이 방식은 이미지를 직접 생성하는 대신 중간 단계로 '텍스트' 표현을 활용하고 이를 계층적으로 구성함으로써, 개별 사진 간의 주제적 일관성을 유지하는 동시에 연산 효율성까지 확보했습니다. 결과적으로 조직은 복잡한 분석 도구마다 프라이버시 기술을 개별 적용할 필요 없이, 안전하게 생성된 합성 앨범 데이터셋만으로도 고도화된 모델 학습과 분석을 수행할 수 있게 됩니다. ### 중간 텍스트 표현을 활용한 프라이버시 강화 기존의 합성 데이터 생성 방식이 단일 이미지나 짧은 텍스트에 치중했던 것과 달리, 본 연구는 이미지를 텍스트로 변환하는 과정을 핵심 기제로 활용합니다. * **손실 압축을 통한 프라이버시 증진:** 이미지를 상세한 텍스트 캡션으로 설명하는 과정은 본질적으로 정보의 일부를 생략하는 '손실 연산'이며, 이는 원본 데이터의 미세한 고유 정보를 보호하는 자연스러운 방어막 역할을 합니다. * **LLM의 강점 활용:** 거대언어모델(LLM)의 뛰어난 텍스트 생성 및 요약 능력을 활용하여, 원본 이미지의 핵심적인 의미 정보(Semantic information)를 효과적으로 포착합니다. * **리소스 최적화:** 이미지 생성은 비용이 많이 들지만 텍스트 생성은 상대적으로 저렴합니다. 텍스트 단계에서 먼저 콘텐츠를 필터링하고 선별함으로써, 불필요한 이미지 생성에 소요되는 연산 자원을 절약할 수 있습니다. ### 계층적 구조를 통한 앨범의 일관성 유지 사진 앨범은 여러 장의 사진이 하나의 주제나 캐릭터를 공유해야 하므로 단순한 개별 이미지 생성보다 난이도가 높습니다. 연구팀은 이를 해결하기 위해 계층적 생성 전략을 채택했습니다. * **2단계 모델 구조:** 앨범 전체의 요약을 생성하는 모델과, 이 요약을 바탕으로 개별 사진의 상세 캡션을 생성하는 모델을 분리하여 학습시킵니다. * **문맥적 일관성 확보:** 모든 개별 사진 캡션이 동일한 '앨범 요약'을 문맥(Context)으로 공유하기 때문에, 생성된 결과물들이 서로 조화를 이루며 하나의 일관된 스토리를 형성하게 됩니다. * **연산 효율성 증대:** 트레이닝 비용은 컨텍스트 길이에 따라 제곱으로 증가합니다. 하나의 긴 컨텍스트를 처리하는 대신 짧은 컨텍스트를 가진 두 개의 모델을 학습시킴으로써 전체적인 연산 비용을 대폭 낮췄습니다. ### 프라이버시가 보장된 학습 알고리즘 합성 데이터가 원본 사용자의 고유한 정보를 유출하지 않도록 엄격한 수학적 증명을 기반으로 하는 학습 기술을 적용했습니다. * **DP-SGD 적용:** DP-SGD(Differentially Private Stochastic Gradient Descent) 알고리즘을 사용하여 모델을 미세 조정(Fine-tuning)함으로써, 생성된 데이터셋이 실제 데이터의 공통적인 패턴은 학습하되 특정 개인의 세부 사항은 포함하지 않도록 보장합니다. * **안전한 데이터 대체제:** 이렇게 생성된 합성 데이터는 프라이버시 위험이 제거된 상태이므로, 데이터 과학자들은 별도의 복잡한 보안 절차 없이 표준적인 분석 기법을 즉시 적용할 수 있습니다. 이 방법론은 단순히 사진 앨범에 국한되지 않고 비디오나 복합 문서와 같이 구조화된 멀티모달 데이터를 안전하게 생성하는 데 광범위하게 응용될 수 있습니다. 고품질의 데이터 확보가 어렵거나 프라이버시 규제가 엄격한 환경에서, 이와 같은 계층적 합성 데이터 생성 방식은 안전하고 효율적인 대안이 될 것입니다.

글로벌 헬스를 위한 LL (새 탭에서 열림)

구글 리서치는 전 세계적인 보건 불평등을 해소하고 저개발 지역의 의료 지원을 강화하기 위해, 열대 및 감염성 질환(TRINDs)에 특화된 LLM 벤치마킹 데이터셋과 평가 파이프라인을 개발했습니다. 연구 결과, 기존 의료 시험(USMLE)에서 우수한 성적을 거둔 모델들도 특정 지역의 질병 데이터나 맥락 정보가 부족할 경우 성능이 현저히 저하되는 '분포 변화' 문제를 겪는 것으로 나타났습니다. 이 연구는 LLM이 실제 글로벌 보건 현장에서 진단 보조 도구로 활용되기 위해서는 증상뿐만 아니라 지역, 위험 요인 등 구체적인 컨텍스트를 정밀하게 학습해야 함을 시사합니다. ### TRINDs 데이터셋 구축과 합성 페르소나 기술 * WHO, CDC 등 신뢰할 수 있는 기관의 데이터를 기반으로 50가지 질병에 대한 '시드 페르소나' 템플릿을 생성했습니다. * LLM 프롬프팅을 활용해 증상, 인구통계학적 특성, 임상 및 소비자 관점의 표현, 언어(영어 및 프랑스어) 등을 변주하여 11,000개 이상의 합성 페르소나 데이터셋을 구축했습니다. * 단순한 질병 정의를 넘어 환자의 생활 방식, 위치 정보, 위험 요인 등 실제 의료 현장에서 발생할 수 있는 복합적인 시나리오를 포함했습니다. ### 모델 성능과 컨텍스트의 상관관계 * Gemini 1.5 모델을 대상으로 평가한 결과, 증상 정보만 제공했을 때보다 위치 정보(Location)와 특정 위험 요인(Risk factors)을 결합했을 때 진단 정확도가 가장 높게 나타났습니다. * 일반적인 증상만으로는 정확한 진단에 한계가 있으며, 질병이 발생하는 지역적 맥락이 LLM의 추론 성능을 최적화하는 핵심 요소임을 확인했습니다. * 이는 LLM이 의료 지원 도구로 작동할 때 환자의 거주지나 여행 기록 같은 외부 환경 데이터를 통합하는 것이 필수적임을 뒷받침합니다. ### 편향성 및 언어적 다양성 분석 * 인종이나 성별 언급이 모델 성능에 미치는 통계적으로 유의미한 차이는 발견되지 않았으나, 언어에 따른 차이는 존재했습니다. * 시드 데이터를 프랑스어로 번역하여 테스트했을 때 영어에 비해 성능이 낮게 나타나, 비영어권 지역에서의 활용을 위해 다국어 성능 개선이 필요함을 입증했습니다. * '반사실적 위치(Counterfactual location)' 실험을 통해 질병 발생 지역을 임의로 변경했을 때 모델의 판단이 흔들리는 현상을 확인했으며, 이는 모델이 특정 질병과 지역을 고정관념적으로 연결하고 있을 가능성을 시사합니다. 의료용 AI가 전 세계적으로 공정하게 기여하기 위해서는 표준화된 의료 시험 점수를 넘어, 지역 특화된 데이터셋을 통한 정밀한 검증이 선행되어야 합니다. 특히 저의료 지역의 보건 요원들이 LLM을 신뢰할 수 있는 도구로 쓰기 위해서는 지역적 맥락(Context-aware)을 반영한 모델 튜닝과 벤치마킹이 지속적으로 이루어져야 할 것입니다.

차분 프라이버 (새 탭에서 열림)

구글 리서치는 별도의 미세 조정(Fine-tuning) 과정 없이 기성 대규모 언어 모델(LLM)의 추론만을 활용하여 차분 프라이버시(Differential Privacy, DP)가 보장된 합성 데이터를 생성하는 새로운 접근 방식을 제안했습니다. 이 방법은 여러 개의 민감한 예시를 병렬 프롬프트로 입력하고 그 응답을 프라이버시를 보호하는 방식으로 집계하여, 기존 방식보다 훨씬 많은 양의 고품질 데이터를 생성할 수 있게 합니다. 결과적으로 복잡한 DP 학습 파이프라인 없이도 민감한 데이터를 안전하게 대체할 수 있는 고성능 합성 데이터셋 구축이 가능해졌습니다. ### 병렬 프롬프팅과 토큰 집계 메커니즘 * 민감한 데이터 하나당 하나의 프롬프트를 할당하여 여러 개의 독립적인 프롬프트를 LLM에 동시에 입력합니다. * 각 프롬프트에서 도출된 다음 토큰 예측(Next-token prediction) 결과들을 집계하고, 특정 개인의 데이터가 결과에 과도한 영향을 미치지 않도록 DP 기법을 적용해 토큰을 최종 선택합니다. * 선택된 토큰을 모든 프롬프트 끝에 다시 추가하고 다음 토큰을 예측하는 과정을 반복함으로써, 개별 데이터의 세부 정보는 가리면서도 데이터셋 전체의 통계적 특성은 유지하는 합성 텍스트를 생성합니다. ### 지수 메커니즘을 통한 프라이버시 예산 최적화 * LLM의 표준 생성 과정인 소프트맥스 샘플링(Softmax sampling)과 DP의 핵심 기법인 지수 메커니즘(Exponential mechanism) 사이의 수학적 연결 고리를 활용합니다. * 다음 토큰을 샘플링할 때 발생하는 고유한 무작위성을 프라이버시 보호를 위한 노이즈로 활용하여, 제한된 프라이버시 예산 안에서도 출력 데이터의 양을 극대화했습니다. * 이를 통해 기존 연구들이 10개 미만의 데이터 포인트 생성에 그쳤던 것과 달리, 수천 개의 고품질 합성 데이터를 성공적으로 생성하며 실무 적용 가능성을 입증했습니다. ### 연산 효율성 개선 및 공개 드래프터 도입 * 기존 방식은 매 토큰 생성 시마다 새로운 데이터 배치를 사용해야 했으나, 이번 연구에서는 동일한 문맥을 유지하며 여러 토큰을 생성할 수 있는 새로운 프라이버시 분석 기법을 도입했습니다. * 이를 통해 KV 캐싱(KV caching)과 같은 표준적인 추론 최적화 기술을 그대로 적용할 수 있어 연산 속도와 효율성을 비약적으로 높였습니다. * 또한, 민감한 데이터가 아닌 공개 데이터에만 기반해 토큰을 제안하는 '공개 드래프터(Public Drafter)' 모델과 희소 벡터 기법(Sparse Vector Technique)을 결합했습니다. 문장 구조나 서식 등 일반적인 정보 생성에는 프라이버시 예산을 소모하지 않도록 설계하여 효율성을 더욱 강화했습니다. 이 방식은 민감한 개인 정보를 다루는 조직이 복잡한 DP 모델 학습 없이도 안전한 합성 데이터를 생성하여 데이터 과학자나 외부 협업 팀에 제공할 수 있는 실무적인 인터페이스 역할을 할 수 있습니다. 특히 데이터 형식이 정형화된 작업에서 높은 성능을 보이므로, 보안이 중요한 환경에서의 데이터 활용도를 높이는 데 적극 권장됩니다.