자네, 해커가 되지 않겠나? Hack Day 2025에 다녀왔습니다! (새 탭에서 열림)

LY Corporation의 'Hack Day 2025'는 19년째 이어져 온 전통 있는 사내 해커톤으로, 직무와 국적에 상관없이 구성원들이 자유롭게 아이디어를 기술로 구현하는 혁신적인 개발 문화를 상징합니다. 참가자들은 24시간 동안 몰입하여 프로토타입을 제작하며, 'Perfect the Details' 정신을 바탕으로 기술적 검증과 협업의 가치를 실현합니다. 이번 행사는 단순한 개발을 넘어 글로벌 동료들과의 네트워크를 강화하고 창의적인 시도를 장려하는 LY Corporation만의 독보적인 기술 축제로 자리매김했습니다. **자유로운 협업과 글로벌 팀 빌딩** * 과거 야후 재팬 시절부터 시작되어 19회차를 맞이한 Hack Day는 기획자, 디자이너, HR 등 사내 구성원 누구나 참여할 수 있는 열린 행사입니다. * 온/오프라인 밋업과 Zoom, Miro 등의 툴을 활용해 한국, 일본, 대만, 베트남 등 다양한 국가의 멤버들이 'Global Mixed Team'을 구성하여 협업합니다. * 하이브리드 워크 환경에 맞춰 이동 시간 및 업무 집중 시간을 보장하는 'Travel Day' 제도를 통해 원격 근무자들이 오프라인에서 밀도 있게 협업할 수 있는 환경을 제공합니다. **몰입을 돕는 환경과 해커톤의 문화** * 행사 기간 동안 오피스의 한 층을 통째로 사용하며, 팀별 독립 공간과 화이트보드, 모니터 등 개발에 필요한 인프라를 전폭적으로 지원합니다. * 1일 차 오전 9시, 전 참가자가 모여 "Hack Time!"을 외치는 개회 선언을 통해 행사의 본격적인 시작을 알리는 전통이 있습니다. * 에너지 소모가 큰 해커톤 특성을 고려하여 시간대별로 도넛, 컵라면 등 다양한 간식과 전 세계 법인에서 가져온 이색 먹거리를 무제한 제공하여 개발에만 집중할 수 있게 돕습니다. **AI 모델을 활용한 기술적 실천과 유연한 피보팅** * 실제 프로젝트 사례로 Slack 커뮤니케이션 기록과 AI 모델을 결합해 개개인의 협업 성향을 분석하는 '전투력 측정' 프로그램을 개발했습니다. * 성격 심리학 모델인 'Big 5 Personality'를 도입하여 데이터의 신뢰성을 확보하고, 이를 게임 캐릭터 능력치처럼 시각화하여 재미 요소를 더했습니다. * 개발 마지막 단계에서 포토 프린터 하드웨어 장애라는 변수가 발생하자, 실물 카드 출력 대신 파일 다운로드 방식으로 기획을 신속하게 변경하며 해커톤 특유의 유연한 문제 해결 능력을 발휘했습니다. **성과 공유를 위한 90초 발표와 부스 운영** * 3일 차에는 각 팀이 결과물을 공유하며, 90초라는 엄격한 시간 제한 속에서 핵심 기능과 데모를 선보이는 '라이브 피칭'을 진행합니다. * 발표 후에는 별도의 부스 운영 시간을 통해 심사위원과 다른 참가자들이 직접 서비스를 체험해 보고 기술적인 디테일에 대해 심도 있는 질의응답을 나눕니다. * 창의성, 기술적 완성도, 발표 전달력을 종합적으로 평가하여 시상하며, 이를 통해 사내 기술 트렌드를 공유하고 성취감을 고취합니다. Hack Day와 같은 사내 해커톤은 일상적인 업무에서 벗어나 최신 기술(AI 등)을 실험하고 동료와의 유대감을 쌓을 수 있는 최고의 기회입니다. 기술적 성장에 목마른 조직이라면, 결과물의 완벽함보다는 24시간 동안의 몰입 경험과 그 과정에서 발생하는 유쾌한 시행착오를 장려하는 문화를 구축해 보길 추천합니다.

Nginx 설정 통합과 Loki 연동으로 설계한 유연한 멀티사이트 아키텍처 (새 탭에서 열림)

LINE NEXT는 빠르게 확장되는 글로벌 서비스 환경에 대응하기 위해 파편화된 웹 서버 인프라를 중앙 집중형 네이티브 Nginx 멀티사이트 구조로 전환했습니다. 기존의 수동 구성 방식과 Ingress Nginx의 제약을 극복하고자 Ansible 기반의 자동화와 설정 통합을 도입했으며, 이를 통해 서비스 론칭 리드 타임을 80% 이상 단축하고 고급 Nginx 기능을 유연하게 구현할 수 있는 환경을 마련했습니다. **Nginx 인프라 아키텍처의 3단계 진화** * **PMC 기반 초기 구조**: 사내 배포 도구인 PMC와 `rsync`를 이용해 서비스별로 독립된 Nginx 서버와 로드밸런서를 운영했습니다. 하지만 서버 발급부터 설정까지 최대 2주의 시간이 소요되었고, 보안망 내 SSH 포트 개방 리스크와 설정 파편화로 인한 유지보수 어려움이 있었습니다. * **Ingress Nginx 기반 구조**: 쿠버네티스 환경에서 헬름 차트를 통해 도메인과 설정을 추상화하여 배포 속도를 높였습니다. 그러나 로드밸런서 프락시 모드 사용 시 클라이언트의 실제 IP(Remote Address) 확인이 어렵고, GeoIP 등 Nginx 네이티브 모듈 활용에 제약이 발생하는 한계가 있었습니다. * **네이티브 Nginx 멀티사이트 구조(현재)**: Ingress Nginx의 설정 중심 방식과 네이티브 Nginx의 기능적 자유도를 결합한 하이브리드 모델입니다. 별도의 Ansible 배포 서버를 구축하여 공통 설정은 유지하되 서비스별로 유연한 기능을 탑재할 수 있도록 개선했습니다. **효율적인 관리와 확장성을 위한 설정 통합** * **마스터 설정과 서버 블록 분리**: Apache의 구성 방식에서 영감을 얻어 `events` 및 `http` 블록의 공통 설정(timeout, log format 등)을 마스터 설정으로 추출하고, 서비스별 가상 호스트 설정은 `sites-available` 디렉터리 내 개별 파일로 관리합니다. * **멀티사이트 아키텍처**: 단일 Nginx 인스턴스에서 다수의 도메인과 서비스를 동시에 서빙할 수 있도록 구조화하여, 신규 서비스 추가 시 설정 파일만 배포하면 즉시 반영되는 환경을 구축했습니다. * **환경별 독립 관리**: 알파, 베타, RC, 프로덕션 등 각 배포 환경에 맞는 설정을 독립적인 리포지터리 구조로 관리하여 운영 안정성을 높였습니다. **Ansible 기반의 안정적인 배포 자동화** * **자동화 프로세스**: 사용자가 타깃 서버와 환경을 지정하면 Ansible이 최신 설정을 클론하여 배포하며, `Nginx Verify`를 통한 문법 검사와 프로세스 상태 체크를 자동으로 수행합니다. * **롤링 배포(Rolling Deployment)**: 서비스 중단을 방지하기 위해 순차적으로 배포를 진행하며, 특정 단계에서 오류가 발생하면 즉시 배포를 중단하여 서비스 영향을 최소화합니다. * **고급 기능 통합**: GeoIP 모듈을 통한 국가별 트래픽 처리, Loki 연동을 통한 실시간 로그 수집, SSL 인증서 자동화 등 복잡한 요구사항을 공통 템플릿 내에서 손쉽게 관리할 수 있게 되었습니다. 다수의 도메인을 운영하고 빠른 서비스 론칭이 필요한 환경이라면, 클라우드 네이티브의 편의성과 네이티브 소프트웨어의 제어권을 모두 챙길 수 있는 'Ansible+네이티브 Nginx' 조합의 멀티사이트 구조 도입을 적극 권장합니다. 이를 통해 인프라 리드 타임 감소는 물론, 보안과 로그 수집 같은 공통 요구사항을 표준화된 방식으로 해결할 수 있습니다.

고충실도 레이블을 통한 (새 탭에서 열림)

구글 애즈(Google Ads) 연구팀은 대규모 언어 모델(LLM) 파인튜닝에 필요한 학습 데이터의 양을 획기적으로 줄이면서도 모델의 정확도를 높일 수 있는 새로운 능동 학습(Active Learning) 기반의 큐레이션 프로세스를 개발했습니다. 이 방법론은 수천억 개의 예시 중 전문가의 주석이 가장 가치 있는 데이터를 반복적으로 식별하여, 기존 10만 개 이상의 데이터가 필요했던 작업을 500개 미만의 데이터만으로 수행하면서 전문가와의 정렬도를 최대 65% 향상시켰습니다. 이를 통해 안전 정책 변화나 새로운 유형의 부적절한 콘텐츠에 대응하는 비용을 크게 절감하고 모델의 신뢰성을 확보할 수 있게 되었습니다. **능동 학습 기반의 데이터 큐레이션 프로세스** * **초기 라벨링 및 클러스터링**: 먼저 퓨샷(Few-shot) 프롬프트가 적용된 LLM-0 모델을 사용하여 대규모 데이터셋을 '정책 위반' 또는 '정상'으로 분류합니다. 이때 발생하는 데이터 불균형과 모델의 낮은 정답률을 해결하기 위해, 각 라벨별로 데이터를 클러스터링합니다. * **경계 영역 샘플링**: 서로 다른 라벨을 가졌음에도 클러스터가 겹치는 구간, 즉 모델이 혼동을 느끼는 결정 경계(Decision Boundary) 부근에서 서로 가장 가까운 데이터 쌍을 찾아냅니다. * **정보성 및 다양성 확보**: 추출된 데이터 쌍 중에서도 전체 탐색 공간을 가장 잘 대변하는 샘플을 우선적으로 선별하여 전문가에게 전달함으로써, 적은 수의 샘플로도 높은 정보성과 다양성을 동시에 확보합니다. * **반복적 파인튜닝**: 전문가가 라벨링한 데이터를 평가용과 학습용으로 나누어 모델을 파인튜닝하며, 모델과 전문가 사이의 정렬도가 전문가들 사이의 합의 수준에 도달하거나 성능이 정체될 때까지 이 과정을 반복합니다. **객관적 성능 평가를 위한 코헨 카파(Cohen’s Kappa) 지표 활용** * 광고 안전성 검토와 같은 영역은 정답(Ground Truth)이 모호한 경우가 많아 정밀도나 재현율 같은 기존 지표 대신 '코헨 카파' 지표를 사용합니다. * 코헨 카파는 두 명의 평가자가 우연히 일치할 확률을 제외하고 얼마나 일관되게 동의하는지를 측정하며, 0.8 이상은 매우 우수한 수준, 0.4 이상은 수용 가능한 수준으로 간주합니다. * 이 지표는 데이터셋의 품질을 모니터링하는 지표인 동시에, 모델이 전문가의 판단 기준에 얼마나 근접했는지를 나타내는 핵심 성능 지표로 활용됩니다. **Gemini Nano 모델을 통한 실험 및 성능 검증** * 연구팀은 1.8B 파라미터의 Gemini Nano-1과 3.25B의 Nano-2 모델을 대상으로 복잡도가 다른 두 가지 과제에 대해 성능을 테스트했습니다. * **데이터 효율성**: 기존에 크라우드소싱을 통해 수집한 10만 개의 데이터를 학습시킨 모델보다, 단 250~400개의 전문가 큐레이션 데이터를 학습시킨 모델이 훨씬 뛰어난 성능을 보였습니다. * **성능 향상**: 복잡도가 높은 과제에서 크라우드소싱 데이터 기반 모델의 카파 지수는 0.41에 불과했으나, 큐레이션 프로세스를 거친 모델은 전문가 합의 수준인 0.78에 근접하는 성과를 거두었습니다. * 결과적으로 대규모 모델을 사용하는 실제 프로덕션 시스템에서는 데이터 규모를 최대 10,000배까지 줄이면서도 품질을 유지하거나 개선할 수 있음을 입증했습니다. 이 연구는 데이터의 '양'보다 '질'과 '선택 방식'이 LLM 성능 향상에 더 결정적임을 보여줍니다. 특히 전문가의 개입이 필요한 모호한 분류 작업에서 비용 효율적으로 고성능 모델을 구축하고자 하는 조직에게 이 능동 학습 기반 큐레이션은 매우 실용적인 가이드라인이 될 것입니다.

웨어러블 기기와 (새 탭에서 열림)

구글 리서치(Google Research)는 웨어러블 기기 데이터와 일반적인 혈액 검사 지표를 결합해 제2형 당뇨병의 전조 증상인 인슐린 저항성(IR)을 높은 정확도로 예측하는 머신러닝 모델을 개발했습니다. 이 연구는 침습적이고 비용이 많이 드는 기존 검사 방식을 대체할 수 있는 확장 가능한 조기 선별 도구를 제시하며, 고위험군을 대상으로 한 예방적 치료의 가능성을 열었습니다. 특히 Gemini 모델 기반의 AI 에이전트를 도입하여 사용자가 자신의 상태를 쉽게 이해하고 맞춤형 건강 관리를 실천할 수 있도록 지원하는 통합적인 접근 방식을 제안합니다. **디지털 바이오마커와 혈액 지표의 결합 (WEAR-ME 연구)** * 미국 전역의 1,165명의 참가자를 대상으로 웨어러블 기기(Fitbit, Google Pixel Watch)와 퀘스트 다이아노스틱스(Quest Diagnostics)의 혈액 검사 데이터를 수집하는 WEAR-ME 연구를 진행했습니다. * 데이터는 안정 시 심박수, 걸음 수, 수면 패턴과 같은 웨어러블 지표와 공복 혈당, 지질 패널(Lipid panel) 등 루틴한 혈액 검사 결과, 인구통계학적 정보를 포함합니다. * 심층 신경망(Deep Neural Network)을 활용해 인슐린 저항성의 표준 지표인 HOMA-IR 점수를 예측하도록 모델을 학습시켰습니다. **모델 성능 및 데이터 소스별 기여도** * 단일 데이터 소스보다 여러 스트림을 결합했을 때 예측 정확도(auROC)가 유의미하게 향상되는 결과를 보였습니다. * 웨어러블 데이터와 인구통계 정보만 사용했을 때 0.70이었던 auROC는 공복 혈당 데이터를 추가하자 0.78로 상승했습니다. * 웨어러블, 인구통계, 공복 혈당에 지질 패널을 포함한 전체 혈액 검사 데이터를 모두 결합했을 때 가장 높은 성능인 0.82(독립 검증 코호트에서 0.81)를 달성했습니다. **고위험군 대상의 효용성 및 검증** * 이 모델은 특히 비만이거나 신체 활동량이 적은 정적인 생활 방식을 가진 고위험군에서 강력한 예측 성능을 보였습니다. * 72명의 독립적인 검증 코호트에서도 일관되게 높은 성능을 유지함으로써 모델의 일반화 가능성을 입증했습니다. * 이는 고비용의 특수 인슐린 검사 없이도 일상적인 데이터와 정기 검진 결과만으로 당뇨 위험을 조기에 포착할 수 있음을 의미합니다. **Gemini 기반 인슐린 저항성 교육 에이전트** * 단순한 수치 예측을 넘어, 최신 거대언어모델(LLM)인 Gemini를 활용한 '인슐린 저항성 이해 및 교육 에이전트(IR Agent)' 프로토타입을 구축했습니다. * 이 에이전트는 사용자가 모델의 예측 결과를 쉽게 해석할 수 있도록 돕고, 인슐린 저항성에 대한 문해력을 높여줍니다. * 분석된 데이터를 바탕으로 안전하고 개인화된 건강 관리 권장 사항을 제공하여 실질적인 생활 습관 개선을 유도합니다. 이 기술은 증상이 나타나기 전 단계에서 인슐린 저항성을 발견함으로써 제2형 당뇨병으로의 진행을 늦추거나 예방할 수 있는 강력한 도구가 될 수 있습니다. 현재는 연구 및 정보 제공 목적으로 개발되었으나, 향후 의료 현장에서 데이터 기반의 정밀한 조기 진단 보조 도구로 활용될 것으로 기대됩니다.

DeepPolisher를 통한 (새 탭에서 열림)

구글 리서치와 UC 산타크루즈 게놈 연구소가 공동 개발한 DeepPolisher는 게놈 조립 과정에서 발생하는 염기 서열 오류를 정밀하게 수정하여 유전체 연구의 정확도를 획기적으로 높이는 딥러닝 도구입니다. 트랜스포머(Transformer) 아키텍처를 기반으로 설계된 이 기술은 기존 방식 대비 전체 오류의 50%, 특히 유전자 식별에 치명적인 삽입 및 삭제(indel) 오류를 70%까지 줄이는 성과를 거두었습니다. 이를 통해 연구자들은 질병 진단과 유전적 변이 분석의 신뢰성을 확보하고 보다 완벽에 가까운 참조 게놈(Reference Genome)을 구축할 수 있게 되었습니다. ## 게놈 조립의 과제와 인델 오류의 영향 * 유전체는 약 30억 개의 염기(A, T, G, C)로 구성되어 있어, 아주 낮은 오류율이라도 전체 게놈에서는 방대한 수의 데이터 결함으로 이어집니다. * 특히 염기가 추가되거나 빠지는 삽입 및 삭제(indel) 오류는 단백질 코딩 서열을 왜곡하여 유전자를 정확히 식별하거나 질병의 원인이 되는 변이를 찾는 과정을 방해합니다. * 유전체 지도를 완성하기 위해서는 동일한 게놈을 여러 번 시퀀싱하여 반복적으로 오류를 수정하는 과정이 필요하지만, 기존의 보정 기술로는 완벽한 정확도에 도달하는 데 한계가 있었습니다. ## 시퀀싱 기술의 발전과 DeepPolisher의 등장 배경 * 과거 Illumina의 숏리드(Short-read) 방식은 정확도는 높으나 길이가 짧아 복잡한 게놈 구조를 파악하기 어려웠고, PacBio의 롱리드(Long-read) 방식은 초기 오류율이 높다는 단점이 있었습니다. * 구글과 PacBio는 협력을 통해 오류율을 0.1% 미만으로 낮춘 DeepConsensus 기술을 개발했으나, 참조 게놈급의 고정밀 지도를 만들기 위해서는 여러 DNA 분자 정보를 통합해 남은 오류를 잡아낼 추가 도구가 필요했습니다. * DeepPolisher는 이러한 배경에서 탄생했으며, 다수의 시퀀싱 리드(reads)를 동시에 분석하여 조립된 게놈의 미세한 결함을 찾아내고 수정하는 최종 폴리싱 역할을 수행합니다. ## 트랜스포머 아키텍처와 학습 데이터 * DeepPolisher는 언어 모델에서 성능이 검증된 트랜스포머 신경망 아키텍처를 채택하여 서열 데이터 내의 복잡한 패턴을 학습합니다. * 모델 학습에는 NIST(미국 국립표준기술연구소)와 NHGRI가 정밀하게 분석하여 정확도가 99.99999%에 달하는 인간 세포주 게놈 데이터를 사용했습니다. * 입력 데이터로 시퀀싱된 염기 정보, 데이터의 품질 점수(Quality score), 그리고 각 리드가 조립된 게놈에 정렬된 형태를 활용하여 실제 유전적 변이와 기계적 노이즈를 정확히 구분해냅니다. DeepPolisher는 현재 오픈 소스로 공개되어 있으며, 휴먼 판게놈 참조 게놈(Human Pangenome Reference) 구축과 같은 최첨단 유전체 프로젝트에서 핵심적인 역할을 수행하고 있습니다. 정밀한 유전체 분석이 필요한 연구팀은 이 도구를 통해 데이터의 신뢰성을 극대화할 수 있을 것입니다.

일 평균 30억 건을 처리하는 결제 시스템의 DB를 Vitess로 교체하기 - 2. 개발 및 운영기 (새 탭에서 열림)

LINE Billing Platform 팀은 일 평균 30억 건의 요청을 처리하는 대규모 결제 시스템을 운영하기 위해 기존 Nbase-T에서 Vitess로 성공적인 데이터베이스 마이그레이션을 수행했습니다. 이 글에서는 성능 문제와 개발 편의성을 고려해 gRPC 대신 MySQL 프로토콜을 선택한 과정과 효율적인 데이터 처리를 위한 샤딩 전략을 상세히 다룹니다. 또한 VTOrc와 Prometheus를 활용한 자동 복구 및 모니터링 체계를 구축하여 분산 데이터베이스 환경에서도 높은 안정성을 확보한 실무 노하우를 공유합니다. ### 프로토콜 선정 및 개발 환경 구축 * VTGate는 gRPC와 MySQL 프로토콜을 모두 지원하지만, gRPC 사용 시 `http2: frame too large` 에러와 CPU 오버헤드가 발생하여 최종적으로 MySQL 프로토콜을 채택했습니다. * Java 클라이언트 사용 시 gRPC 프로토콜은 쿼리 결과를 객체로 변환하는 과정이 번거롭고 Vitess 측에서도 현재 MySQL 프로토콜 사용을 권장하고 있습니다. * 익숙한 MySQL 프로토콜을 사용함으로써 기존 개발 경험을 유지하면서도 Vitess의 샤딩 기능을 안정적으로 활용할 수 있게 되었습니다. ### 키스페이스 설계 및 데이터 처리 방식 * 시스템은 크게 두 개의 키스페이스로 분리되어 있습니다. '글로벌 키스페이스'는 단일 샤드로 구성되어 자동 증가(Auto-increment)하는 샤딩 키를 관리합니다. * 실제 데이터가 저장되는 '서비스 키스페이스'는 N개의 샤드로 분산되어 있으며, 코인 잔액 및 충전/사용 내역 등의 데이터를 저장합니다. * 서비스 키스페이스는 'Hash Vindex'를 사용하여 데이터를 균등하게 분산하며, 애플리케이션이 쿼리에 샤딩 키를 포함하면 VTGate가 해당 샤드를 자동으로 특정해 효율적인 요청 처리가 가능합니다. ### MySQL 호환성 및 주요 기능 활용 * 트랜잭션 격리 수준은 단일 샤드일 경우 `REPEATABLE READ`, 다중 샤드일 경우 `READ COMMITTED`가 적용됩니다. * Vitess는 MySQL 프로토콜을 지원하지만 일부 쿼리 제약 사항이 존재하므로, `unsupported_cases.json`을 통해 사전에 호환성을 확인해야 합니다. * 분산 샤드 간 트랜잭션을 지원하는 'Two-Phase Commit(2PC)' 기능과 쿼리 실행 계획을 분석하는 'VEXPLAIN/VTEXPLAIN' 등을 통해 분산 환경의 제약을 보완하고 있습니다. ### 안정적인 운영을 위한 모니터링 및 장애 복구 * 자동 복구 도구인 'VTOrc'를 도입하여 토폴로지 서버와 VTTablet의 데이터를 기반으로 문제를 자동 감지하고 복구합니다. * Prometheus를 통해 VTOrc의 지표(Metrics)를 수집하며, 장애 발생 시 이메일과 Slack으로 알람이 전달되도록 구성했습니다. * VTAdmin 웹 UI를 활용해 복구 내역을 시각적으로 확인하고, `tablet_alias`를 통해 문제가 발생한 MySQL 노드를 즉각적으로 식별하여 운영 효율성을 높였습니다. 대규모 분산 환경에서 Vitess를 도입할 때는 성능과 유지보수를 위해 gRPC보다는 MySQL 프로토콜 사용을 우선적으로 고려하는 것이 좋습니다. 또한 단일 샤드와 다중 샤드 간의 트랜잭션 격리 수준 차이 및 쿼리 제약 사항을 면밀히 검토하여 애플리케이션 로직을 설계해야 하며, VTOrc와 같은 도구를 적극 활용하여 고가용성 운영 체계를 구축하는 것이 중요합니다.

MLE-STAR: 최첨단 (새 탭에서 열림)

MLE-STAR는 웹 검색 기능과 정밀한 코드 블록 최적화 메커니즘을 결합한 차세대 머신러닝 엔지니어링 에이전트로, 복잡한 ML 파이프라인 구축 과정을 자동화합니다. 기존 에이전트들이 LLM의 사전 지식에만 의존하거나 코드 전체를 한 번에 수정하려 했던 한계를 극복하기 위해, 성능에 가장 큰 영향을 미치는 특정 구성 요소를 식별하고 이를 집중적으로 개선하는 방식을 채택했습니다. 그 결과 MLE-Bench-Lite의 Kaggle 경진 대회에서 63%의 메달 획득률을 기록하며 기존 기술들을 압도하는 성능을 증명했습니다. **웹 검색을 통한 최신 기법 도입 및 초기 솔루션 구축** * LLM의 내장된 지식에만 의존할 때 발생하는 특정 라이브러리(예: scikit-learn) 편향 문제를 해결하기 위해 실시간 웹 검색 기능을 활용합니다. * 주어진 과제와 데이터 모달리티에 가장 적합한 최신(State-of-the-art) 모델과 방법론을 검색하여 초기 솔루션 코드를 생성하는 기반으로 삼습니다. **어블레이션 연구 기반의 타겟 코드 블록 정제** * 전체 파이프라인 코드를 무작위로 수정하는 대신, '어블레이션 연구(Ablation Study)'를 수행하여 피처 엔지니어링이나 모델 구조 등 성능 기여도가 가장 높은 특정 코드 블록을 찾아냅니다. * 식별된 핵심 블록에 대해 이전 시도의 실행 결과와 피드백을 반영하며 집중적인 반복 실험을 수행함으로써, 특정 파이프라인 단계에서의 최적화를 심도 있게 진행합니다. **지능형 솔루션 앙상블 전략** * 단순한 성능 기반 투표 방식에서 벗어나, 에이전트가 스스로 여러 후보 솔루션을 병합할 수 있는 최적의 앙상블 전략을 직접 설계하고 제안합니다. * 병렬로 생성된 다양한 해결책들을 유기적으로 결합하며, 이 과정 또한 반복적인 피드백 루프를 통해 지속적으로 개선하여 최종 예측 성능을 극대화합니다. **시스템 안정성 및 신뢰성 강화를 위한 모듈** * **디버깅 에이전트:** 파이썬 스크립트 실행 중 발생하는 트레이스백(Traceback) 오류를 분석하고 즉각적으로 코드를 교정합니다. * **데이터 누수(Data Leakage) 체크:** 테스트 데이터의 정보가 학습 과정에 유입되는 위험을 방지하기 위해 실행 전 스크립트의 논리적 무결성을 검증합니다. * **데이터 사용 확인 도구:** 에이전트가 CSV와 같은 단순한 데이터만 사용하고 다른 중요한 데이터 소스를 누락하지 않도록 모든 제공된 데이터를 활용하는지 감시합니다. MLE-STAR는 단순한 코드 생성을 넘어 데이터 분석, 전략 수립, 오류 수정 및 검증에 이르는 머신러닝 엔지니어링의 전 과정을 수행할 수 있음을 보여줍니다. 특히 Kaggle과 같은 실제 경쟁 환경에서 높은 성과를 낸 만큼, 향후 기업 현장에서 복잡한 데이터 파이프라인을 효율적으로 구축하고 실험 비용을 절감하는 데 실질적인 도움을 줄 것으로 기대됩니다.

회귀 언어 모델을 이용한 (새 탭에서 열림)

구글 리서치와 딥마인드 팀은 모든 수치 예측 문제를 텍스트-투-텍스트(text-to-text) 방식으로 해결하는 '회귀 언어 모델(Regression Language Model, RLM)'을 제안했습니다. 이 방법론은 복잡하고 구조화되지 않은 대규모 시스템의 데이터를 텍스트로 변환하여 LLM이 직접 수치를 예측하게 함으로써, 기존의 정형 데이터 기반 회귀 모델이 가졌던 한계를 극복합니다. 특히 구글의 클러스터 관리 시스템인 Borg의 효율성 예측에서 기존 모델보다 뛰어난 성능과 유연성을 입증하며 대규모 시스템 시뮬레이션의 새로운 가능성을 제시했습니다. **텍스트 기반 회귀 모델의 메커니즘** * 모든 입력 데이터($x$)와 타깃 수치($y$)를 구조화된 텍스트 스트링(예: YAML, JSON)으로 표현하여 모델에 입력합니다. * 모델은 일반적인 LLM과 마찬가지로 다음 토큰 예측(Next Token Prediction) 방식을 사용하며, 교차 엔트로피 손실 함수를 통해 학습합니다. * 별도의 피처 엔지니어링이나 데이터 정규화 과정이 필요 없으며, 사전 학습된 모델을 활용하거나 처음부터 무작위 초깃값으로 학습시키는 것 모두 가능합니다. * 수치를 텍스트로 처리함으로써 새로운 데이터 유형이나 하드웨어 사양, 워크로드 패턴이 추가되더라도 모델 구조를 변경하지 않고 유연하게 대응할 수 있습니다. **구글 Borg 시스템을 통한 실증 연구** * 구글의 컴퓨팅 인프라인 Borg의 자원 효율성 지표인 'MIPS per GCU'를 예측하는 데 RLMs를 적용했습니다. * 약 6,000만 개의 파라미터를 가진 2레이어 인코더-데코더 구조의 모델을 사용해 대규모 클러스터의 상태를 시뮬레이션했습니다. * 입력 데이터가 최대 100만 토큰에 달하는 경우, 중요도가 높은 피처를 앞쪽에 배치하는 전처리 과정을 통해 모델의 토큰 제한(8,000개) 내에서도 핵심 정보를 보존했습니다. * 퓨샷(few-shot) 그래디언트 업데이트만으로도 새로운 태스크와 데이터 유형에 빠르게 적응하는 성능을 보여주었습니다. **확률 분포 캡처 및 불확실성 모델링** * RLM의 출력 결과를 여러 번 샘플링함으로써 단순한 점 예측을 넘어 출력값 $y$의 확률 밀도(Density)를 정확하게 추정할 수 있습니다. * 이를 통해 시스템 내부의 고유한 무작위성(우연적 불확실성, Aleatoric Uncertainty)과 관측 데이터 부족으로 인한 불확실성(인식적 불확실성, Epistemic Uncertainty)을 동시에 파악합니다. * 실험 결과, RLM은 복잡한 다봉형(multimodal) 분포를 가진 타깃 값도 기존의 MLP(다층 퍼셉트론)나 XGBoost보다 훨씬 정교하게 모사하는 능력을 갖췄음이 확인되었습니다. **성능 비교 및 확장성** * 데이터 양이 적은 상황(Low-data regime)에서 RLM은 전통적인 회귀 모델들보다 월등히 높은 예측 정확도를 기록했습니다. * 복잡한 시스템의 설정값, 로그 정보, 메타데이터 등을 텍스트 형태로 통합 학습함으로써 시스템 전반에 대한 깊은 이해를 바탕으로 한 시뮬레이션이 가능해졌습니다. * 구글은 이 방법론을 누구나 활용할 수 있도록 'regress-lm'이라는 오픈소스 라이브러리를 공개하여 연구 커뮤니티의 참여를 독려하고 있습니다. 복잡하고 변화가 빠른 시스템에서 데이터 스키마를 정의하고 피처를 추출하는 데 드는 비용을 줄이고 싶다면, 입력을 텍스트로 직렬화하여 RLM을 적용해 보는 것을 추천합니다. 특히 시뮬레이션 대상의 불확실성이 크고 데이터가 비정형인 환경일수록 텍스트 기반 회귀 모델이 기존 방식보다 더 강력한 범용 근사 도구가 될 수 있습니다.

DDD를 Merchant 시스템 구축에 활용한 사례를 소개합니다 (새 탭에서 열림)

기존의 음식 배달 중심 시스템에서 벗어나 소매 상품 판매에 최적화된 새로운 Merchant 시스템을 구축하기 위해 도메인 주도 설계(DDD)를 도입했습니다. 이번 프로젝트는 DDD가 단순히 코드 구현 기술이 아니라, 도메인의 역할과 책임을 명확히 정의하고 이를 바탕으로 조직 구조와 협업 방식을 설계하는 방법론임을 보여줍니다. 클린 아키텍처와 비동기 이벤트 기반의 모듈 구성을 통해 시스템의 확장성을 확보하고, 글로벌 팀 간의 원활한 협업 체계를 마련하며 성공적으로 시스템을 론칭했습니다. **소매 플랫폼으로의 전환과 도메인 정의** * 기존 시스템의 '음식점 기반 소매 판매' 한계를 극복하기 위해 독립적인 Merchant 시스템을 설계했습니다. * Merchant 시스템은 점포, 상품, 재고 등의 정보를 제공하고, 실제 판매는 '소비자 플랫폼'에서 담당하는 구조로 역할을 분리했습니다. * 핵심 도메인을 점포(shop), 상품(item), 카테고리(category), 재고(inventory), 주문(order)의 다섯 가지로 정의하여 복잡도를 낮추었습니다. **클린 아키텍처를 활용한 시스템 설계** * 도메인 엔티티가 외부 환경의 변화에 영향을 받지 않도록 클린 아키텍처를 채택했습니다. * 모든 팀원이 쉽게 이해하고 따를 수 있는 명확한 계층 구조를 통해 유지보수 편의성을 높였습니다. * 의존성 방향을 내부(도메인)로만 허용하여 비즈니스 로직의 순수성을 유지했습니다. **비동기 기반의 모듈 및 통신 구조** * 시스템을 외부 요청을 받는 'API' 모듈과 비즈니스 로직을 처리하는 '엔진' 모듈로 분리하여 가용성을 높였습니다. * gRPC를 통한 API 제공과 Apache Kafka 기반의 내부 통신을 결합했으며, Decaton 라이브러리를 사용해 파티션 대비 높은 처리량을 확보했습니다. * 플랫폼 특성을 고려하여 즉각적인 응답보다는 최종 일관성(Eventual Consistency)과 빠른 API 응답 능력에 초점을 맞춘 비동기 구조를 설계했습니다. **글로벌 협업과 조직의 일치(Conway's Law)** * 한국 팀은 핵심 도메인(Core)을, 일본 팀은 현지 시스템 연계(Link, BFF)를 담당하도록 조직을 구성해 콘웨이의 법칙을 실천했습니다. * 의사결정 과정과 논의 배경을 기록하는 ADR(Architectural Decision Record)을 활용해 조직 간의 공감대를 형성하고 불필요한 재논의를 방지했습니다. * 추상화된 연계 계층을 통해 새로운 소비자 플랫폼이 추가되더라도 핵심 도메인의 변화는 최소화되는 유연한 구조를 만들었습니다. 성공적인 DDD 적용을 위해서는 헥사고날 아키텍처와 같은 기술적인 구현에만 매몰되지 않는 것이 중요합니다. 도메인의 역할과 책임을 먼저 명확히 정의하고, 그 경계에 맞춰 팀 조직과 소통 구조를 설계할 때 진정한 설계의 이점을 얻을 수 있습니다. 시스템의 아키텍처가 조직의 소통 구조를 반영한다는 점을 인지하고, 기술과 조직 관리의 균형을 맞추는 접근이 권장됩니다.

SensorLM: 웨어러블 (새 탭에서 열림)

구글 리서치가 발표한 SensorLM은 약 6,000만 시간 분량의 방대한 웨어러블 센서 데이터를 자연어와 연결하여 학습한 새로운 유형의 센서-언어 파운데이션 모델입니다. 이 모델은 스마트워치 등이 수집하는 복잡한 센서 신호를 인간이 이해할 수 있는 정교한 설명으로 변환함으로써, 단순한 수치 기록을 넘어 행동의 맥락과 원인을 파악하는 헬스케어의 새로운 지평을 열었습니다. 대규모 멀티모달 학습을 통해 제로샷 활동 인식 및 텍스트 생성 분야에서 기존 모델을 뛰어넘는 성능을 입증하며 개인 맞춤형 건강 관리의 가능성을 제시합니다. **데이터셋 구축 및 자동화된 캡션 생성** - 127개국 10만 명 이상의 동의를 얻은 익명화된 핏빗(Fitbit) 및 픽셀 워치 데이터를 활용하여 총 5,970만 시간 분량의 역대 최대 규모 센서-언어 데이터셋을 구축했습니다. - 사람이 일일이 데이터를 라벨링하는 비용 문제를 해결하기 위해, 센서 데이터의 통계 정보와 추세, 주요 이벤트를 분석하여 자동으로 상세한 설명을 생성하는 '계층적 파이프라인'을 개발했습니다. - 이를 통해 기존 연구들보다 수십 배 큰 규모의 데이터를 확보함으로써 고차원 센서 신호와 자연어 사이의 미세한 상관관계를 학습할 수 있는 기반을 마련했습니다. **대조 학습과 생성 학습의 통합 아키텍처** - 센서 조각과 텍스트 설명을 매칭하는 '대조 학습(Contrastive Learning)'을 적용하여 수영이나 근력 운동 같은 서로 다른 활동을 정밀하게 구분하는 능력을 갖췄습니다. - 고차원 센서 신호로부터 직접 맥락에 맞는 텍스트 캡션을 생성하는 '생성형 사전 학습(Generative Pre-training)'을 결합하여 데이터의 의미를 능동적으로 해석하도록 설계했습니다. - 두 학습 전략을 단일 프레임워크로 통합함으로써 센서 데이터의 통계적 특성뿐만 아니라 구조적, 의미론적 차원까지 아우르는 깊이 있는 이해가 가능해졌습니다. **활동 인식 및 교차 모달 검색 능력** - 별도의 미세 조정(Fine-tuning) 없이도 20가지 활동을 정확히 분류하는 제로샷(Zero-shot) 성능을 보여주며, 일반적인 거대 언어 모델(LLM)보다 월등히 높은 정확도를 기록했습니다. - 소량의 데이터만으로 새로운 작업에 적응하는 퓨샷(Few-shot) 학습 능력이 뛰어나, 개인별로 다른 활동 패턴이나 특수한 건강 상태에도 유연하게 대응할 수 있습니다. - 텍스트로 특정 센서 패턴을 찾거나 반대로 센서 데이터를 통해 자연어 설명을 추출하는 '교차 모달 검색' 기능을 통해 전문가의 데이터 분석 효율성을 극대화했습니다. **고도화된 상황 인식 캡션 생성** - 웨어러블 기기에서 발생하는 복잡한 신호를 입력받아 계층적이고 문맥에 맞는 자연어 설명을 생성하며, 기존 비전담 LLM 대비 사실 관계가 정확하고 일관성 있는 텍스트를 출력합니다. - 단순한 활동 요약을 넘어 센서 신호에 담긴 통계적 추이와 구조적 변화를 인간의 언어로 번역함으로써 사용자가 자신의 건강 데이터를 훨씬 직관적으로 이해할 수 있도록 돕습니다. SensorLM은 단순히 수치를 기록하는 기기를 넘어 사용자의 상태를 이해하고 설명해 주는 지능형 건강 비서로의 진화를 예고합니다. 이러한 기술은 향후 전문가 수준의 건강 분석 도구나 개인 맞춤형 웰니스 서비스에 핵심 기술로 활용될 것으로 기대됩니다.

합성 및 연합 (새 탭에서 열림)

구글 리서치는 개인정보를 보호하면서도 모바일 사용자 경험을 혁신하기 위해 거대언어모델(LLM)을 활용한 합성 데이터 생성과 연합 학습(Federated Learning) 기술을 결합하는 방안을 제시했습니다. 이 기술은 Gboard의 오타 교정, 다음 단어 예측 등 핵심 기능을 고도화하는 데 사용되며, 실제 사용자 데이터를 직접 노출하지 않고도 모델의 도메인 적응 성능을 획기적으로 높였습니다. 결과적으로 차등 개인정보 보호(Differential Privacy)가 적용된 연합 학습 모델이 실제 서비스에 성공적으로 배포되어, 보안과 성능을 동시에 확보할 수 있음을 입증했습니다. **LLM을 활용한 고품질 합성 데이터 생성** * 공개된 데이터를 학습한 강력한 LLM을 사용하여 모바일 사용자의 타이핑 특성을 반영한 합성 데이터를 생성합니다. * 사용자의 민감한 개인 데이터에 직접 접근하는 대신, LLM이 공개 데이터셋에서 모바일 상호작용과 유사한 텍스트를 필터링하거나 직접 생성하도록 유도하는 프롬프트 엔지니어링을 활용합니다. * 이렇게 생성된 합성 데이터는 소형 모델(Small LM)의 사전 학습 단계에서 활용되어, 개인정보 암기 위험을 최소화하면서도 타겟 도메인에 최적화된 성능을 낼 수 있도록 돕습니다. **연합 학습과 차등 개인정보 보호의 결합 (DP-FL)** * Gboard의 모든 생산용 언어 모델은 사용자 기기 내에서 데이터를 처리하는 연합 학습(FL)과 데이터 노출을 통계적으로 제한하는 차등 개인정보 보호(DP) 기술을 적용합니다. * 새로운 알고리즘인 'BLT-DP-FTRL'을 도입하여 개인정보 보호 수준과 모델 성능 사이의 최적의 균형을 유지하며, 배포의 편의성을 높였습니다. * 온디바이스 환경에 최적화된 'SI-CIFG' 모델 아키텍처를 사용하여 기기 내에서의 효율적인 학습과 DP 알고리즘 간의 호환성을 확보했습니다. **오류 교정 및 도메인 적응 성능 강화** * LLM을 통해 정제된 텍스트를 생성한 후, 의도적으로 오타나 문법 오류를 삽입하여 '오류-교정' 쌍의 합성 데이터를 대량으로 확보합니다. * 이 합성 데이터로 모델을 학습시킴으로써 모바일 기기에서의 교정 제안 및 맞춤법 검사 기능을 정교화했습니다. * 실제 환경 적용 결과, 주요 생산성 지표에서 3%~13%의 성능 향상을 기록하며 모바일 타이핑 경험을 실질적으로 개선했습니다. 합성 데이터와 연합 학습의 조합은 개인정보를 철저히 보호하면서도 고성능 AI 서비스를 제공할 수 있는 강력한 기술적 프레임워크를 제공합니다. 특히 데이터 보안이 중요한 모바일 환경에서 LLM의 생성 능력을 활용해 데이터 부족 문제를 해결하고 모델을 고도화하는 전략은 향후 다양한 AI 애플리케이션의 핵심적인 표준이 될 것으로 기대됩니다.

Milvus: LINE VOOM의 실시간 추천 시스템을 위한 대규모 벡터 DB 구축기 (새 탭에서 열림)

LINE VOOM은 기존 오프라인 배치 기반 추천 시스템의 한계인 콘텐츠 노출 지연 문제를 해결하기 위해 대규모 벡터 데이터베이스인 Milvus를 도입하여 실시간 추천 시스템을 구축했습니다. 이를 통해 신규 콘텐츠를 즉각적으로 추천 후보군에 반영할 수 있게 되었으며, 철저한 검증 과정을 거쳐 분산 환경에서의 안정성과 성능을 확보했습니다. ### 기존 시스템의 한계와 실시간 추천의 필요성 * 기존 시스템은 포스트 임베딩 생성과 유사도 검색 과정을 일 단위 오프라인 배치로 처리하여, 신규 콘텐츠가 추천되기까지 최대 하루의 시간이 소요되었습니다. * 새해 인사나 스포츠 경기 하이라이트처럼 즉시성이 중요한 '신선한 콘텐츠'가 사용자에게 바로 전달되지 못해 사용자 경험이 저하되는 문제가 있었습니다. * 이를 해결하기 위해 오프라인 저장소를 온라인으로 전환하고, 중간 과정 없이 실시간으로 유사성 검색을 수행할 수 있는 시스템 구조로 개편했습니다. ### 벡터 DB 선정 배경과 Milvus 채택 이유 * 벡터 전용 DB, 오픈소스, 온프레미스 구축 가능성, 고부하 환경에서의 저지연 성능을 핵심 기준으로 삼아 Milvus와 Qdrant를 비교했습니다. * Milvus는 Qdrant 대비 높은 QPS(Query Per Second)와 낮은 지연 시간을 보였으며, 스토리지와 컴퓨팅이 분리된 아키텍처를 통해 더 높은 안정성을 제공했습니다. * 10가지 이상의 다양한 인메모리 인덱스 유형을 지원하여 시나리오별 최적화가 용이하고, 활발한 커뮤니티를 통해 기술적 이슈 대응이 빠르다는 점을 높게 평가했습니다. ### 카오스 테스트를 통한 장애 시나리오 식별 * 분산 환경에서의 안정성을 검증하기 위해 파드 킬(Pod Kill), 스케일 인/아웃 등 고의적인 장애를 주입하는 카오스 테스트를 수행했습니다. * 테스트 결과, 쿼리 코디네이터(Querycoord)나 Etcd 장애 시 컬렉션이 릴리스되거나 메타데이터가 손실되어 검색이 불가능해지는 심각한 결함을 사전에 발견했습니다. * 또한 특정 코디네이터 노드가 단일 실패 지점(SPOF)이 되어 전체 시스템에 영향을 줄 수 있음을 확인했습니다. ### 시스템 안정성 강화를 위한 고가용성 설계 * **컬렉션 고가용성(HA) 구성**: 두 개의 컬렉션에 임베딩을 이중으로 기록(Dual-writing)하고, 장애 발생 시 클라이언트 단에서 별칭(Alias)을 즉시 교체하여 사본 컬렉션을 참조하도록 구현했습니다. * **코디네이터 고가용성 구성**: 단일 파드로 작동하여 장애에 취약한 코디네이터 노드들을 액티브-스탠바이(Active-Standby) 모드로 설정했습니다. * 이를 통해 인덱스 코디네이터 등이 중단되더라도 대기 중인 노드가 즉시 역할을 이어받아 인덱스 생성 실패 및 서비스 중단을 예방할 수 있는 구조를 갖추었습니다. 대규모 실시간 추천 환경에서 벡터 DB를 성공적으로 운영하려면 단순히 검색 성능만 고려하는 것이 아니라, 구성 요소별 장애 시나리오를 면밀히 분석하고 컬렉션 이중화 및 코디네이터 고가용성 설계를 통해 복원력을 확보하는 것이 매우 중요합니다.

LSM-2: 불완 (새 탭에서 열림)

Google Research는 실제 환경의 웨어러블 센서 데이터에서 빈번하게 발생하는 데이터 공백(missingness) 문제를 해결하기 위해 LSM-2(Large Sensor Model-2)를 공개했습니다. 이 모델은 데이터가 불완전하더라도 이를 억지로 채우거나 삭제하지 않고, '적응형 상속 마스킹(AIM)' 기법을 통해 데이터의 결손 자체를 자연스러운 특징으로 학습합니다. 그 결과, LSM-2는 대규모 데이터셋을 바탕으로 분류, 회귀, 생성 등 다양한 건강 관련 태스크에서 기존의 보간(imputation) 방식보다 뛰어난 성능과 견고함을 입증했습니다. **웨어러블 데이터의 결손 문제와 한계** * 충전, 기기 미착용, 움직임에 의한 노이즈, 배터리 절약 모드 등으로 인해 실제 웨어러블 센서 데이터에는 필연적으로 공백이 발생합니다. * 연구팀이 분석한 160만 개의 일일 데이터 창 중에서 결손율이 0%인 샘플은 단 하나도 없었을 정도로 데이터의 불완전성은 보편적인 문제입니다. * 기존의 자가 지도 학습(SSL)은 완벽한 데이터를 가정하며, 결손이 있을 경우 데이터를 임의로 채우는 보간법을 쓰거나 불완전한 샘플을 삭제해 버리는데, 이는 데이터 편향을 초래하거나 귀중한 정보를 손실하는 결과를 낳습니다. **AIM(Adaptive and Inherited Masking) 프레임워크** * AIM은 결손된 데이터를 오류로 처리하는 대신, 이를 데이터의 고유한 속성으로 간주하고 직접 학습하는 새로운 자가 지도 학습 방식입니다. * 마스킹 방식은 데이터에 원래 존재하는 공백인 '상속된 마스크(Inherited Mask)'와 학습을 위해 의도적으로 가린 '인공적 마스크(Artificial Mask)'를 결합하여 구성됩니다. * **토큰 드롭아웃(Token Drop-out):** 계산 효율성을 위해 고정된 비율의 마스킹된 토큰을 인코더 처리 과정에서 제외합니다. * **어텐션 마스킹(Attention Masking):** 고정된 비율을 초과하여 발생하는 가변적인 데이터 공백은 트랜스포머 블록 내에서 어텐션 마스킹을 통해 유연하게 처리합니다. **LSM-2의 학습 및 성능 지표** * 약 6만 명 이상의 참가자로부터 수집한 4,000만 시간 분량의 익명화된 웨어러블 데이터(Fitbit 및 Pixel Watch)를 사용하여 LSM-2를 사전 학습했습니다. * LSM-2는 심박수 신호, 수면 패턴, 활동량 등 다중 모드(multimodal) 데이터를 통합적으로 이해하며, 이전 모델인 LSM-1보다 향상된 성능을 보여줍니다. * 특히 센서가 일시적으로 작동하지 않거나 특정 시간대 데이터가 통째로 누락된 상황에서도, 보간법을 사용한 모델들에 비해 성능 저하가 훨씬 적고 견고한 예측력을 유지합니다. **실용적인 결론 및 추천** 현실 세계의 웨어러블 기기 데이터를 다루는 개발자나 연구자라면, 불완전한 데이터를 정제하거나 채우는 데 리소스를 쏟기보다 LSM-2와 같이 결손 자체를 학습 프로세스에 통합하는 접근법을 고려해야 합니다. AIM 기법은 데이터의 가변적인 파편화를 자연스럽게 수용하므로, 고혈압 예측과 같은 실제 임상적 다운스트림 태스크에서 더욱 정확하고 일반화된 결과를 도출하는 데 효과적입니다.

Flutter Riverpod 200% 활용하기 (새 탭에서 열림)

Riverpod은 기존 Provider 라이브러리의 한계를 극복하고 개발자가 더욱 직관적이고 유연하게 상태를 관리할 수 있도록 설계된 Flutter 상태 관리 라이브러리입니다. 서버 데이터 처리 최적화, 자동 생명 주기 관리, 의존성 주입 등 강력한 기능을 기본으로 제공하여 코드의 복잡성을 대폭 낮춰줍니다. 결과적으로 개발 생산성을 높이고, 성능 저하나 디버깅 오류와 같은 상태 관리의 고질적인 문제들을 효과적으로 해결해 줍니다. **서버 데이터 처리 및 상태 관리 최적화** * 서버에서 데이터를 가져올 때 필수적인 로딩, 에러, 데이터 유무 상태를 별도 로직 없이 기본적으로 제공합니다. * API 호출 도중 해당 데이터가 더 이상 필요하지 않게 되면 요청을 자동으로 취소하거나, 데이터의 유효 기간 및 재사용 설정을 손쉽게 관리할 수 있습니다. * '당겨서 새로 고침(pull to refresh)'과 같은 빈번한 UI 패턴을 `ref.refresh` 기능을 통해 간결하게 구현할 수 있어 반복적인 코드 작성을 줄여줍니다. **자유로운 의존성 주입과 자동 생명 주기 관리** * 위젯 계층 구조에 묶이지 않고 어디서든 Provider에 접근할 수 있어, 복잡한 순서나 구조를 신경 쓰지 않고 데이터를 참조할 수 있습니다. * Riverpod이 Provider의 생성과 소멸 시점을 자동으로 관리하므로 메모리 누수 방지와 같은 자원 관리가 용이합니다. * 개발자는 상태를 정의하는 Model과 이를 관리하는 Provider, 데이터를 소비하는 View를 명확히 분리하여 깔끔한 아키텍처를 유지할 수 있습니다. **효율적인 데이터 연동 및 캐시 활용 기법** * **Provider 간 상태 구독:** 필터 조건이 변경되면 이를 구독 중인 목록 Provider가 자동으로 데이터를 새로 불러오도록 설정할 수 있어 수동 리빌드 로직이 필요 없습니다. * **즉각적인 사용자 경험 제공:** 상세 화면 이동 시 목록에서 미리 불러온 데이터를 즉시 노출하고, 동시에 서버에서 추가 정보를 가져오는 방식으로 로딩 지연을 최소화합니다. * **오프라인 데이터 결합:** 로컬 DB 데이터와 서버 데이터를 유연하게 결합하여 네트워크가 불안정한 환경에서도 사용자에게 끊김 없는 인터페이스를 제공할 수 있습니다. * **화면 간 동기화:** 상세 화면에서 수정된 즐겨찾기 상태나 업데이트 내역이 목록 화면에도 즉각 반영되도록 구현하여 앱 전반의 데이터 일관성을 보장합니다. Riverpod은 단순히 상태를 저장하는 도구를 넘어, 비동기 프로그래밍과 의존성 관리를 우아하게 해결해 주는 솔루션입니다. 특히 서버 통신이 많고 화면 간 데이터 동기화가 복잡한 앱을 개발할 때, Riverpod의 선언적인 코드 스타일과 리액티브한 특징을 활용하면 유지 보수성이 뛰어난 코드를 작성할 수 있습니다.

소비자용 초 (새 탭에서 열림)

구글 리서치는 스마트폰에 이미 탑재된 초광대역(UWB) 레이더 기술과 전이 학습(Transfer Learning)을 활용해 비접촉식으로 심박수를 측정할 수 있는 새로운 기술을 공개했습니다. 기존의 주파수 변조 연속파(FMCW) 레이더 데이터로 학습된 딥러닝 모델의 지식을 UWB 시스템에 성공적으로 이식함으로써, 별도의 추가 하드웨어 없이도 일상적인 모바일 기기에서 정밀한 건강 모니터링이 가능함을 입증했습니다. 이 기술은 호흡이나 몸의 움직임 속에서도 심장의 미세한 진동을 정확히 포착하여 개인용 헬스케어의 새로운 지평을 열 것으로 기대됩니다. **UWB 레이더를 활용한 생체 신호 감지** * UWB는 현재 스마트폰에서 주로 정밀 위치 찾기나 디지털 키 등에 사용되지만, 고유의 레이더 성능을 활용하면 심박수와 같은 활력 징후 측정이 가능합니다. * 구글은 기존 Nest Hub의 'Soli' 레이더(FMCW 방식)를 통해 축적한 방대한 데이터와 알고리즘을 UWB 환경에 적용하는 연구를 진행했습니다. * UWB는 짧은 펄스를 사용하여 거리를 측정하므로, 연속파를 사용하는 FMCW와 물리적 원리는 다르지만 딥러닝을 통해 학습된 특징(Feature)을 공유할 수 있습니다. **비접촉 측정의 한계와 시공간적 해결책** * 심박으로 인한 흉벽의 미세한 움직임은 호흡이나 일반적인 신체 움직임에 비해 매우 작아 노이즈에 묻히기 쉽습니다. * 이를 해결하기 위해 레이더의 3차원 공간 해상도를 활용하여 신체 주변에 정밀한 '측정 구역'을 설정하고 배경 노이즈를 차단합니다. * 동시에 최대 200Hz의 높은 시간 해상도로 신호를 샘플링하여 심장 박동의 빠르고 미세한 시간적 변화를 포착합니다. **딥러닝 모델 아키텍처 및 전이 학습** * 입력 데이터의 시간과 공간 축을 동시에 분석하기 위해 2D ResNet 구조를 사용하여 미세한 시공간 패턴을 추출합니다. * 이후 평균 풀링(Average Pooling)을 거쳐 공간 차원을 축소하고, 1D ResNet을 통해 시간적 차원에서 심박의 주기적 패턴을 식별합니다. * FMCW 데이터셋(980시간 분량)으로 사전 학습된 이 모델은 평균 절대 오차(MAE) 0.85 bpm을 기록하며 기존 기술 대비 오차율을 절반 수준으로 줄였습니다. * 상대적으로 적은 분량(37.3시간)의 UWB 데이터셋에서도 전이 학습을 통해 스마트폰을 책상이나 무릎에 두는 실제 환경에서 높은 정확도를 보여주었습니다. 이 연구는 추가적인 센서 부착 없이도 우리가 매일 사용하는 스마트폰만으로 고정밀 생체 신호 모니터링이 가능하다는 점을 시사합니다. 향후 웨어러블 기기의 불편함 없이 수면 중이나 명상 시, 혹은 일상적인 스마트폰 사용 중에도 실시간 건강 관리가 가능해지는 기술적 토대가 될 것입니다.