AWS

22 개의 포스트

aws.amazon.com/blogs/aws

태그로 필터

aws

NVIDIA RTX PRO 6 (새 탭에서 열림)

Amazon은 NVIDIA RTX PRO 6000 Blackwell 서버 에디션 GPU를 탑재한 새로운 EC2 G7e 인스턴스의 정식 출시를 발표했습니다. 이 인스턴스는 생성형 AI 추론 워크로드에서 뛰어난 비용 효율성을 제공하며, 이전 세대인 G6e 대비 최대 2.3배 향상된 추론 성능을 자랑합니다. 공간 컴퓨팅 및 과학적 컴퓨팅과 같이 높은 그래픽 성능이 요구되는 작업에 최적화된 하이엔드 솔루션입니다. ### NVIDIA Blackwell GPU 기반의 성능 혁신 * **메모리 용량 및 대역폭:** NVIDIA RTX PRO 6000 Blackwell GPU를 통해 G6e 대비 2배의 GPU 메모리(개당 96GB)와 1.85배의 메모리 대역폭을 제공합니다. * **대규모 모델 처리:** 향상된 메모리 사양 덕분에 단일 GPU 환경에서도 FP8 정밀도로 최대 700억 개(70B) 파라미터 규모의 중간급 모델을 실행할 수 있습니다. * **컴퓨팅 파워:** 최신 Intel Emerald Rapids 프로세서를 탑재하여 강력한 CPU 성능과 GPU 성능의 조화를 이룹니다. ### 멀티 GPU 효율성 및 상호 연결 기술 * **NVIDIA GPUDirect P2P 지원:** 단일 GPU 메모리를 초과하는 대규모 모델을 위해 PCIe 인터커넥트를 통한 GPU 간 직접 통신을 지원하여 지연 시간을 최소화합니다. * **대역폭 향상:** G6e에 탑재된 L40s GPU 대비 GPU 간 대역폭이 최대 4배 증가하여, 멀티 GPU 워크로드의 처리 효율이 비약적으로 상승했습니다. * **확장성:** 단일 노드에서 최대 8개의 GPU를 사용하여 총 768GB의 GPU 메모리를 확보할 수 있어, 거대 언어 모델(LLM) 추론에 유리합니다. ### 네트워킹 및 스토리지 가속화 * **고속 네트워크:** G6e 대비 4배 더 넓은 최대 1,600Gbps의 네트워크 대역폭을 제공하여 소규모 멀티 노드 워크로드에 적합합니다. * **지연 시간 감소:** Elastic Fabric Adapter(EFA)를 통한 GPUDirect RDMA를 지원하여 원격 GPU 간 통신 시 병목 현상을 줄였습니다. * **데이터 로딩 최적화:** Amazon FSx for Lustre와 GPUDirectStorage를 결합하여 최대 1.2Tbps의 처리량을 지원하므로, 대용량 모델 데이터를 매우 빠르게 로드할 수 있습니다. ### 상세 인스턴스 사양 * **인스턴스 구성:** 최소 `g7e.2xlarge`(1 GPU, 8 vCPU)부터 최대 `g7e.48xlarge`(8 GPU, 192 vCPU)까지 총 6가지 크기를 제공합니다. * **시스템 자원:** 최대 2,048GiB의 시스템 메모리와 15.2TB의 로컬 NVMe SSD 스토리지를 선택할 수 있어 데이터 집약적인 작업에 대응합니다. 생성형 AI 모델의 크기가 커짐에 따라 고용량 GPU 메모리와 빠른 상호 연결 성능이 필수적인 환경에서 G7e 인스턴스는 최적의 선택지입니다. 특히 기존 G6e 인스턴스 사용자가 성능 한계를 느끼거나, 70B급 모델을 보다 효율적으로 서빙하고자 하는 개발 팀에게 이 인스턴스로의 전환을 적극 추천합니다. 현재 미국 동부(버지니아 북부) 및 미국 서부(오레곤) 리전에서 바로 사용할 수 있습니다.

aws

AWS 주간 뉴스 요약 (새 탭에서 열림)

이 글은 2026년 1월 셋째 주 AWS의 주요 기술 업데이트와 커뮤니티 소식을 다루며, 특히 Kiro CLI의 기능 강화와 유럽 주권 클라우드의 정식 출시를 핵심 성과로 제시합니다. 또한 고성능 메모리 최적화 인스턴스인 EC2 X8i의 상용화와 Amazon Quick Suite를 통한 AI 에이전트 활용 사례를 통해 더욱 고도화된 클라우드 생태계를 구축했음을 보여줍니다. 이번 소식은 엔터프라이즈급 성능 요구 사항과 지역별 규제 준수, 그리고 AI 기반 생산성 향상이라는 세 가지 측면에서 AWS의 진보를 요약하고 있습니다. **Kiro CLI의 제어 및 사용자 경험 강화** * 웹 호출(web fetch) URL에 대한 세밀한 제어 기능을 도입하여, 허용 목록(allowlist)과 차단 목록(blocklist)을 통해 에이전트가 접근할 수 있는 URL 범위를 엄격하게 제한할 수 있습니다. * 커스텀 에이전트를 위한 전용 키보드 단축키와 개선된 Diff 뷰를 제공하여, 단일 세션에서 여러 전문화된 에이전트와 협업할 때 발생하는 마찰을 최소화했습니다. **AWS 유럽 주권 클라우드 정식 출시** * 2023년부터 추진해 온 독립적인 클라우드 인프라인 'AWS European Sovereign Cloud'가 모든 고객을 대상으로 정식 서비스(GA)를 시작했습니다. * 유럽 내 가장 엄격한 데이터 주권 및 규제 요건을 충족할 수 있도록 설계되었으며, 포괄적인 AWS 서비스 세트를 제공하여 유럽 고객들의 컴플라이언스 대응을 지원합니다. **메모리 최적화 EC2 X8i 인스턴스 상용화** * AWS 전용 커스텀 Intel Xeon 6 프로세서를 탑재한 EC2 X8i 인스턴스가 정식 출시되었으며, 모든 코어에서 최대 3.9GHz의 터보 주파수를 유지합니다. * SAP 인증을 획득한 이 인스턴스는 클라우드 내 인텔 기반 프로세서 중 최고 수준의 성능과 메모리 대역폭을 제공하여 메모리 집약적인 워크로드에 최적화되어 있습니다. **생산성 향상을 위한 AI 에이전트 및 도구** * AI 에이전트 동료인 'Amazon Quick Suite'를 통해 비즈니스 질문에 답을 구하고 인사이트를 행동으로 전환하는 생산성 활용 사례가 공유되었습니다. * GitHub Actions를 사용하여 Amazon Bedrock AgentCore에 AI 에이전트를 자동 배포하는 방법이 소개되어, 개발자들이 더욱 효율적으로 AI 기능을 운영 환경에 적용할 수 있게 되었습니다. 이번 업데이트는 강력한 보안과 규제 준수가 필요한 유럽 시장부터, 고성능 컴퓨팅이 요구되는 엔터프라이즈 환경, 그리고 실무 효율을 높이는 AI 에이전트 기술까지 폭넓은 영역을 아우르고 있습니다. 기술 조직은 특히 강화된 Kiro CLI와 Bedrock AgentCore 배포 자동화 가이드를 참고하여 사내 AI 에이전트 운영 환경을 최적화하고 개발 생산성을 한 단계 더 끌어올릴 수 있을 것입니다.

aws

커스텀 인텔 (새 탭에서 열림)

AWS가 Intel Xeon 6 프로세서를 탑재한 차세대 메모리 최적화 인스턴스인 Amazon EC2 X8i의 정식 출시를 발표했습니다. 이 인스턴스는 이전 세대인 X2i 대비 최대 1.5배의 메모리 용량과 3.4배의 대역폭을 제공하여 대규모 데이터베이스 및 분석 작업에 최적화되었습니다. 특히 SAP 인증을 획득하여 SAP HANA와 같은 고성능 인메모리 워크로드에서 압도적인 효율성을 보여줍니다. **커스텀 Intel Xeon 6 기반의 독보적인 성능** * AWS 전용으로 설계된 커스텀 Intel Xeon 6 프로세서를 탑재하여 전 코어 3.9GHz의 지속적인 터보 주파수를 제공합니다. * 이전 세대(X2i)와 비교했을 때 전체적으로 최대 43%의 성능 향상을 실현했습니다. * 최대 6TB의 메모리 용량을 지원하며, 메모리 대역폭은 3.4배 더 넓어져 데이터 집약적인 처리에 유리합니다. **주요 워크로드별 벤치마크 및 비용 효율성** * SAP HANA 워크로드에서 이전 세대 대비 최대 50% 향상된 SAPS(SAP Application Performance Standard) 성능을 기록했습니다. * PostgreSQL 성능은 최대 47%, Memcached는 최대 88%, AI 추론 성능은 최대 46%까지 개선되었습니다. * 실제 고객 사례인 Orion의 경우, X8i의 높은 성능 덕분에 활성 코어 수를 줄이면서도 동일 성능을 유지하여 SQL Server 라이선스 비용을 50% 절감했습니다. **유연한 인스턴스 규격과 대역폭 옵션** * 가상화 인스턴스(48xlarge, 64xlarge, 96xlarge 등)부터 베어메탈(metal-48xl, metal-96xl)까지 총 14가지 크기를 제공합니다. * 최대 100Gbps의 네트워크 대역폭(EFA 지원)과 80Gbps의 Amazon EBS 대역폭을 통해 대규모 데이터 전송 병목 현상을 최소화합니다. * IBC(Instance Bandwidth Configuration) 기능을 지원하여 사용자가 필요에 따라 네트워크와 EBS 대역폭 할당량을 조정할 수 있습니다. **가용성 및 구매 방식** * 현재 미국 동부(버지니아 북부), 미국 서부(오레곤), 유럽(프랑크푸르트, 아일랜드), 아시아 태평양(시드니, 도쿄) 리전에서 즉시 사용 가능합니다. * 온디맨드, 예약 인스턴스(RI), Savings Plans 및 스팟 인스턴스 등 다양한 구매 옵션을 통해 비용을 최적화할 수 있습니다. SAP HANA와 같은 대규모 인메모리 데이터베이스를 운영하거나, 높은 컴퓨팅 파워와 방대한 메모리가 동시에 필요한 EDA(전자 설계 자동화) 및 데이터 분석 환경이라면 X8i 인스턴스로의 전환을 통해 성능 향상과 라이선스 비용 절감 효과를 동시에 거둘 수 있을 것입니다.

aws

AWS 유럽 소버린 클라우 (새 탭에서 열림)

AWS가 유럽의 공공 부문과 고도로 규제된 산업의 디지털 주권 요구사항을 충족하기 위해 'AWS 유럽 소버린 클라우드(AWS European Sovereign Cloud)'의 정식 출시를 발표했습니다. 이 서비스는 기존 AWS 리전과 물리적·논리적으로 완전히 분리된 독립적인 인프라를 제공하며, 모든 데이터와 운영 제어권을 유럽 연합(EU) 내에 유지하도록 설계되었습니다. 이를 통해 유럽 고객들은 강력한 보안과 기술적 통제력을 갖춘 환경에서 최신 클라우드 기술을 활용하여 규제 준수와 혁신을 동시에 달성할 수 있게 되었습니다. ### 유럽 내 완전 독립형 인프라 가동 * **지리적 격리:** 첫 번째 리전은 독일 브란덴부르크에 위치하며, 기존의 글로벌 AWS 리전들과는 물리적으로나 시스템적으로 완전히 분리되어 운영됩니다. * **운영 자율성:** 중복된 전력 및 네트워킹 시스템을 갖춘 여러 가용 영역(Availability Zones)을 포함하며, 외부 세계와의 연결이 끊긴 상황에서도 지속적으로 작동할 수 있도록 설계되었습니다. * **독립적 거버넌스:** 유럽 내 독립적인 운영 주체에 의해 관리되며, 데이터 저장부터 처리까지 모든 과정이 유럽 사법권 체제 아래에서 투명하게 관리됩니다. ### 데이터 주권 및 규제 요구사항 최적화 * **엄격한 통제권:** 데이터 레지던시, 운영 제어 및 거버넌스 독립성에 대한 복잡한 규제 요구사항을 해결하여 공공기관 및 금융, 의료 등 규제가 엄격한 산업군에 최적화된 환경을 제공합니다. * **온프레미스 대체:** 기능이 제한된 기존의 온프레미스 환경이나 파편화된 소버린 솔루션 대신, AWS의 방대한 서비스 포트폴리오를 그대로 활용할 수 있는 완전한 클라우드 기능을 제공합니다. * **법적 및 기술적 보장:** 강력한 기술적 제어와 법적 보호 장치를 결합하여 유럽 고객들이 요구하는 최상위 수준의 주권 보증을 실현했습니다. ### 유럽 전역으로의 확장 및 유연한 배포 * **지역 확장 계획:** 독일을 시작으로 벨기에, 네덜란드, 포르투갈에 새로운 '소버린 로컬 존(Sovereign Local Zones)'을 구축하여 유럽 전역으로 서비스 범위를 넓힐 예정입니다. * **하이브리드 지원:** 고객의 자체 데이터 센터에서 사용할 수 있는 'AWS Outposts'나 전용 로컬 존, AI 팩토리 등을 통해 고객이 원하는 위치에서 주권 클라우드 인프라를 확장할 수 있습니다. * **풍부한 서비스 생태계:** 초기 출시 단계부터 보안, 컴퓨팅, 스토리지 등 핵심 서비스를 포함한 포괄적인 AWS 서비스 세트를 제공하여 기술적 제약 없는 전환을 지원합니다. 유럽 연합 내에서 엄격한 규제 준수가 필수적인 조직이라면, AWS 유럽 소버린 클라우드를 통해 데이터 주권 문제 해결과 현대적인 클라우드 네이티브 아키텍처 도입이라는 두 가지 목표를 동시에 검토해 보시기 바랍니다.

aws

AWS 주간 소식 (새 탭에서 열림)

2026년 1월 초 AWS의 주요 업데이트 소식을 다루며, 특히 .NET 10 기반의 AWS Lambda 지원과 Amazon ECS의 tmpfs 마운트 기능 등 개발 생산성을 높이는 신규 기능들을 소개합니다. 또한 AWS re:Invent 2025의 핵심 발표 내용과 함께, 클라우드 기술 역량 강화를 위해 6개월간 최대 200달러의 크레딧을 제공하는 프리티어 혜택을 강조하고 있습니다. 최종적으로 개발자와 아키텍트가 최신 클라우드 기술을 실무에 빠르게 적용할 수 있도록 돕는 다양한 가이드와 커뮤니티 소식을 전달합니다. ### 주요 서비스 및 기술 업데이트 - **AWS Lambda .NET 10 지원**: .NET 10 버전의 관리형 런타임 및 컨테이너 베이스 이미지를 공식 지원하며, AWS에서 관리형 런타임에 대한 업데이트를 자동으로 수행합니다. - **Amazon ECS tmpfs 마운트 확장**: AWS Fargate 및 Linux 기반 관리형 인스턴스에서 tmpfs 마운트를 지원하여, 데이터를 디스크에 쓰지 않고 메모리 내 파일 시스템을 활용함으로써 성능을 최적화할 수 있습니다. - **Amazon MQ 인증 방식 강화**: RabbitMQ 브로커에 대해 HTTP 기반 인증 플러그인을 설정할 수 있으며, 상호 TLS(mTLS)를 통한 인증서 기반 인증 방식을 새롭게 지원합니다. - **Amazon MWAA 및 AWS Config 업데이트**: Apache Airflow 2.11 버전을 지원하여 Airflow 3로의 업그레이드 준비를 돕고, AWS Config에서 SageMaker 및 S3 Tables 등 추가적인 리소스 타입을 관리할 수 있게 되었습니다. - **AWS Client VPN 퀵스타트**: VPN 인프라 구성 과정을 단순화하여 상호 인증 모델을 사용한 VPN 엔드포인트를 보다 빠르게 배포할 수 있는 도구를 제공합니다. ### re:Invent 2025 다시보기 및 커뮤니티 인사이트 - **주요 세션 공개**: AWS 공식 유튜브 채널을 통해 re:Invent 2025의 기조연설과 기술 세션 영상이 제공되어 생성형 AI, 데이터베이스 등 최신 기술 트렌드를 학습할 수 있습니다. - **전문가 추천 콘텐츠**: AWS Hero들이 Amazon Bedrock, CDK, S3 Tables, Aurora Limitless Database 등 혁신적인 신규 서비스와 관련된 핵심 세션을 요약하여 추천합니다. - **커뮤니티 블로그**: 전 세계 AWS 전문가들이 작성한 re:Invent 요약 글을 통해 기술적 통찰력을 공유받을 수 있습니다. ### 글로벌 행사 및 교육 기회 - **AWS 프리티어 혜택**: 신규 사용자는 6개월 동안 최대 200달러의 크레딧과 30개 이상의 상시 무료 서비스를 통해 리스크 없이 클라우드 환경을 실험해 볼 수 있습니다. - **향후 이벤트 일정**: 파리, 암스테르담 등에서 열리는 AWS Summit과 바르샤바 AWS Cloud Day 등 글로벌 컨퍼런스가 예정되어 있어 지속적인 네트워킹과 학습이 가능합니다. AI와 클라우드 전문성을 키우고자 한다면 이번에 강화된 AWS 프리티어 혜택을 활용해 .NET 10 런타임이나 신규 VPN 퀵스타트 도구를 직접 실습해 보는 것을 추천합니다. 특히 대규모 데이터 처리가 필요한 워크로드라면 ECS의 tmpfs 마운트 기능을 통해 I/O 성능을 개선할 수 있는 기회를 검토해 보시기 바랍니다.

aws

새해 복 많이 받으세요! (새 탭에서 열림)

2026년 새해를 맞아 AWS는 AI 혁신을 위한 대규모 경진대회와 교육 프로그램을 발표하며 커뮤니티 지원을 강화했습니다. 이와 동시에 Graviton4 기반의 새로운 EC2 인스턴스 출시와 ECS 관리형 인스턴스 도입 등 인프라 효율성을 높이는 주요 기술 업데이트를 공개했습니다. 사용자는 이를 통해 더 강력한 컴퓨팅 성능을 확보하고, 자동화된 도구를 활용해 보안 및 시스템 복원력을 효과적으로 검증할 수 있습니다. **AI 인재 양성 및 글로벌 아이디어 경진대회** * **BeSA 멘토링 프로그램**: 'Agentic AI on AWS'를 주제로 한 6주 과정의 무료 멘토링 프로그램이 2026년 2월 21일부터 시작됩니다. * **10,000 AIdeas 공모전**: 총 25만 달러의 상금과 AWS 크레딧이 제공되는 글로벌 경진대회로, 아이디어 접수 마감은 1월 21일까지입니다. * **참가 요건**: 개발 도구로 'Kiro'를 활용해야 하며, AWS 프리티어 범위 내에서 작동하는 독창적인 애플리케이션 아이디어를 코딩 없이도 제출할 수 있습니다. **Graviton4 기반 차세대 EC2 인스턴스 출시** * **M8gn 및 M8gb 인스턴스**: AWS Graviton4 프로세서를 탑재하여 이전 세대(Graviton3) 대비 연산 성능이 최대 30% 향상되었습니다. * **네트워크 및 스토리지 가속**: M8gn은 최대 600 Gbps의 네트워크 대역폭을, M8gb는 최대 150 Gbps의 EBS 대역폭을 지원하여 데이터 집약적인 워크로드에 최적화되었습니다. **인프라 안정성 및 보안 거버넌스 강화** * **Direct Connect 복원력 테스트**: AWS Fault Injection Service(FIS)를 사용하여 Direct Connect의 BGP 장애 조치(Failover) 상황을 시뮬레이션하고 애플리케이션의 대응 능력을 검증할 수 있습니다. * **AWS Control Tower 기능 확장**: 보안, 비용, 운영 효율성을 관리할 수 있는 176개의 Security Hub 컨트롤이 새롭게 추가되어 더욱 정교한 클라우드 거버넌스가 가능해졌습니다. **Amazon ECS 관리형 인스턴스 도입** * **EC2 용량 관리 자동화**: Amazon ECS가 EC2 인스턴스의 패치, 업데이트 및 크기 조정을 직접 관리하여 인프라 운영 부담을 줄여줍니다. * **운영 편의성**: 사용자는 기반 인프라 관리에 신경 쓰는 대신 컨테이너 기반 애플리케이션 개발에만 집중할 수 있는 환경을 구축할 수 있습니다. AI 분야에서 앞서나가고자 한다면 1월 21일 마감되는 AIdeas 경진대회에 아이디어를 제출하고, 고성능 서비스가 필요한 경우 Graviton4 기반의 신규 인스턴스 도입을 검토해 보시기 바랍니다.

aws

AWS 주간 요약: Amazon ECS (새 탭에서 열림)

2025년 re:Invent 행사 이후에도 AWS는 사용자 편의성과 개발 효율성을 높이기 위한 다양한 서비스 업데이트를 지속적으로 발표하고 있습니다. 이번 주 업데이트의 핵심은 Amazon ECS의 컨테이너 종료 제어 유연성 확보와 Aurora 데이터베이스의 즉각적인 프로비저닝 능력 강화에 있으며, 이를 통해 개발자들은 보다 정밀하고 빠른 클라우드 환경을 구축할 수 있게 되었습니다. **애플리케이션 개발 및 데이터베이스 환경 개선** * **Amazon Aurora DSQL 클러스터 생성 속도 향상:** 데이터베이스 클러스터 생성 시간이 기존 분 단위에서 초 단위로 대폭 단축되었습니다. 이를 통해 개발자는 통합 쿼리 에디터나 AI 기반 개발 도구를 사용하여 신속하게 프로토타이핑을 시작할 수 있습니다. * **Aurora PostgreSQL의 Kiro powers 통합:** AI 보조 코딩을 지원하는 'Kiro powers' 리포지토리와 통합되었습니다. 개발자는 Kiro IDE에서 클릭 한 번으로 설치하여 쿼리, 스키마 관리, 클러스터 작업에 필요한 컨텍스트를 동적으로 로드하고 활용할 수 있습니다. * **Amazon Redshift와 OpenSearch의 Zero-ETL 통합:** 복잡한 데이터 파이프라인 구축 없이도 Redshift의 데이터를 OpenSearch로 실시간 연동하여 검색 및 분석 성능을 극대화할 수 있습니다. **컨테이너 및 서버리스 운영 최적화** * **ECS 및 Fargate의 사용자 정의 정지 신호 지원:** 이제 Fargate 태스크가 컨테이너 이미지에 설정된 특정 정지 신호(예: SIGQUIT, SIGINT)를 인식합니다. 기본값인 SIGTERM 외의 신호가 필요한 애플리케이션도 이제 안전하고 우아한 종료(Graceful Shutdown)가 가능해졌습니다. * **AWS Lambda의 고급 로깅 기능 확장:** 사용자 정의 런타임에서도 JSON 형식의 로깅 및 로그 레벨 제어 기능을 사용할 수 있게 되었습니다. 이를 통해 복잡한 서버리스 환경에서 로그 수집과 디버깅 과정이 더욱 체계화되었습니다. **보안 강화 및 관리 편의성 증대** * **WorkSpaces Secure Browser의 웹 콘텐츠 필터링:** 25개 이상의 사전 정의된 카테고리를 기반으로 웹 접근을 제어할 수 있는 기능이 추가되었습니다. 추가 비용 없이 10개 리전에서 사용 가능하며, 세션 로거(Session Logger)와 통합되어 규정 준수 모니터링이 강화되었습니다. * **Amazon Cognito의 OTP 자동 인증:** 이메일 및 전화번호 확인을 위해 일회성 비밀번호(OTP)를 자동으로 검증하는 기능이 도입되었습니다. 사용자 가입 절차를 간소화하면서도 보안성을 유지할 수 있는 환경을 제공합니다. * **Amazon CloudWatch SDK 최적화:** SDK에서 최적화된 JSON 및 CBOR 프로토콜을 지원하여 데이터 전송 효율과 모니터링 성능을 개선했습니다. re:Invent 2025의 주요 발표와 더불어 이번 주에 업데이트된 세부 기능들을 검토하여 현재 운영 중인 인프라에 적용해 보시기 바랍니다. 특히 Fargate의 정지 신호 커스터마이징이나 Aurora DSQL의 빠른 생성 기능은 개발 및 배포 파이프라인의 효율을 즉각적으로 개선할 수 있는 실질적인 도구가 될 것입니다.

aws

AWS 주간 소식 요약 (새 탭에서 열림)

AWS re:Invent 2025는 단순한 기술 발표를 넘어 AI 어시스턴트가 자율적인 'AI 에이전트'로 진화하는 중대한 변곡점을 시사했습니다. AWS는 개발자들에게 발명의 자유를 제공한다는 핵심 미션을 재확인하며, 자연어로 복잡한 작업을 수행하고 코드를 실행하는 에이전트 중심의 미래 비전을 제시했습니다. 이번 행사는 AI 투자가 실질적인 비즈니스 가치로 전환되는 시점에서 보안, 가용성, 성능이라는 클라우드의 본질적 가치를 다시 한번 강조했습니다. **AI 에이전트 중심의 비즈니스 혁신** * **어시스턴트에서 에이전트로의 진화:** 단순한 답변 제공을 넘어 스스로 계획을 세우고, 코드를 작성하며, 필요한 도구를 호출해 작업을 완수하는 자율형 에이전트가 핵심 기술로 부상했습니다. * **실질적 비즈니스 수익 창출:** AI가 단순한 실험 단계를 지나 기업의 업무를 자동화하고 효율성을 높임으로써 구체적인 재무적 성과를 내기 시작하는 단계에 진입했습니다. * **비결정적 특성에 최적화된 인프라:** 결과가 매번 다를 수 있는 AI 에이전트의 특성(Non-deterministic)을 고려하여, 안전하고 신뢰할 수 있으며 확장이 용이한 전용 인프라를 구축하고 있습니다. **아키텍트의 르네상스와 개발자 생태계** * **설계 역량의 재발견:** 기술적 세부 사항에 매몰되기보다 시스템 전체를 조망하고 설계하는 고수준 아키텍처 역량이 중요해진 '아키텍트의 르네상스' 시대가 도래했습니다. * **커뮤니티 기여의 가치:** 필리핀의 AWS 히어로 라피(Rafi)가 'Now Go Build' 상을 수상한 사례를 통해, 기술 혁신만큼이나 커뮤니티 빌딩과 개발자 역량 강화가 중요함을 강조했습니다. * **발명의 자유(Freedom to Invent):** 지난 20년간 AWS의 중심이었던 개발자들이 창의성을 발휘할 수 있도록 도구와 환경을 제공하는 것이 AWS의 변함없는 목표임을 천명했습니다. **클라우드 기반 기술의 지속적 고도화** * **커스텀 실리콘과 인프라:** 보안, 가용성, 성능이라는 클라우드의 기본 속성을 유지하면서도 AI 워크로드에 최적화된 하드웨어 혁신을 지속하고 있습니다. * **자연어 기반 솔루션 구현:** 사용자가 달성하고자 하는 목적을 자연어로 설명하면 시스템이 실행 가능한 솔루션으로 변환하는 인터페이스의 혁신이 가속화되고 있습니다. AI 에이전트가 주도하는 기술 환경 변화에 대응하기 위해, 기업들은 단순한 챗봇 도입을 넘어 비즈니스 프로세스 자체를 자동화할 수 있는 에이전트 활용 전략을 수립해야 합니다. AWS re:Invent 2025의 주요 세션 영상과 발표 자료가 온디맨드로 제공되고 있으므로, 조직의 요구 사항에 맞는 AI 아키텍처를 재설계하고 새로운 기술 도구들을 선제적으로 검토해 보시길 권장합니다.

aws

Amazon Bedrock, 강화 미세 (새 탭에서 열림)

Amazon Bedrock에 새롭게 도입된 '강화 미세 조정(Reinforcement Fine-tuning)'은 대규모 라벨링 데이터셋 없이도 피드백 루프를 통해 AI 모델의 정확도와 효율성을 극대화하는 혁신적인 맞춤화 기능입니다. 이 서비스는 복잡한 기계 학습 워크플로를 자동화하여 전문 지식이 부족한 개발자도 기본 모델 대비 평균 66% 향상된 성능의 모델을 구축할 수 있게 지원합니다. 결과적으로 기업은 높은 비용이 드는 대형 모델 대신, 특정 업무에 최적화된 작고 빠른 모델을 경제적으로 운용할 수 있습니다. **강화 미세 조정의 작동 원리와 차별점** * 기존의 미세 조정 방식이 사람이 일일이 라벨을 붙인 방대한 데이터셋을 필요로 했던 것과 달리, 보상 함수(Reward functions)를 사용하여 모델의 응답 품질을 평가하고 학습시킵니다. * 고정된 예시를 암기하는 것이 아니라, 어떤 응답이 비즈니스 요구사항에 더 적합한지 판단하는 '보상 신호'를 통해 모델이 반복적으로 개선됩니다. * 이러한 피드백 기반 접근 방식은 데이터 준비 비용을 획기적으로 줄이면서도 모델이 사용자의 의도를 더 정확하게 파악하도록 돕습니다. **비즈니스 효율성을 위한 주요 장점** * **사용 편의성:** Amazon Bedrock 내의 기존 API 로그나 업로드된 데이터셋을 그대로 활용할 수 있어, 복잡한 인프라 설정 없이도 즉시 학습을 시작할 수 있습니다. * **성능 및 비용 최적화:** Amazon Nova 2 Lite와 같은 가볍고 빠른 모델을 강화 미세 조정함으로써, 더 크고 비싼 모델보다 뛰어난 특정 작업 수행 능력을 갖추게 할 수 있습니다. * **보안 및 신뢰성:** 모델 맞춤화의 모든 과정이 보안이 유지되는 AWS 환경 내에서 이루어지므로, 기업의 민감한 데이터 유출 우려 없이 안전하게 학습이 가능합니다. **세부 최적화 기법: RLVR 및 RLAIF** * **RLVR (Verifiable Rewards):** 수학적 추론이나 코드 생성처럼 정답이 명확한 객관적 작업에 대해 규칙 기반의 채점기를 사용하여 모델을 개선합니다. * **RLAIF (AI Feedback):** AI가 생성한 피드백을 활용하여 모델의 응답 품질을 높이는 방식으로, 보다 복잡하고 주관적인 맥락이 포함된 작업에 유용합니다. 방대한 데이터를 준비하기 어렵거나 모델 운영 비용을 절감하면서도 높은 정확도를 원하는 기업에게 Amazon Bedrock의 강화 미세 조정은 매우 실용적인 대안이 됩니다. 특히 Amazon Nova 2 Lite 모델을 시작으로 점차 지원 모델이 확대될 예정이므로, 특정 도메인에 특화된 가성비 높은 AI 서비스를 구축하고자 하는 개발팀에게 이 기능을 적극 활용해 볼 것을 추천합니다.

aws

Option 2 (Natural Tech (새 탭에서 열림)

Amazon SageMaker AI는 Amazon Nova, DeepSeek, Llama 등 주요 AI 모델에 대해 인프라 관리 없이 미세 조정(Fine-tuning)을 수행할 수 있는 새로운 서버리스 커스터마이징 기능을 발표했습니다. 이 기능은 복잡한 리소스 프로비저닝을 자동화하여 모델 최적화 기간을 수개월에서 수일 수준으로 단축하며, 사용자가 인프라 대신 모델 튜닝 자체에 집중할 수 있는 환경을 제공합니다. 개발자는 SageMaker Studio의 직관적인 인터페이스를 통해 최신 강화 학습 기법을 몇 번의 클릭만으로 적용하고 모델을 즉시 배포할 수 있습니다. ### 서버리스 기반의 인프라 자동화 및 효율성 * **자동 리소스 프로비저닝**: 모델의 크기와 학습 데이터의 양에 맞춰 SageMaker AI가 최적의 컴퓨팅 리소스를 자동으로 선택하고 할당합니다. * **관리 부담 제거**: 서버리스 환경에서 구동되므로 사용자가 직접 인스턴스를 관리하거나 확장성을 고민할 필요가 없습니다. * **실험 추적 통합**: 새롭게 도입된 서버리스 MLflow 애플리케이션을 통해 하이퍼파라미터 및 실험 과정을 체계적으로 기록하고 관리할 수 있습니다. ### 고도화된 모델 커스터마이징 기법 지원 * **다양한 학습 기법**: 지도 학습 기반 미세 조정(SFT)뿐만 아니라 직접 선호도 최적화(DPO), 검증 가능한 보상을 통한 강화 학습(RLVR), AI 피드백 기반 강화 학습(RLAIF) 등 최신 기법을 지원합니다. * **사용자 친화적 UI**: SageMaker Studio 내 'Customize with UI' 기능을 통해 코딩 부담을 줄이면서도 배치 크기, 학습률, 에포크(Epoch) 등 상세 설정을 조정할 수 있습니다. * **연속적인 최적화**: 학습 완료 후 'Continue customization' 기능을 사용하여 하이퍼파라미터를 조정하거나 다른 기법으로 추가 학습을 진행하는 반복 작업이 용이합니다. ### 평가 및 유연한 배포 옵션 * **성능 비교 평가**: 커스터마이징된 모델이 기본 모델 대비 얼마나 개선되었는지 확인할 수 있는 평가(Evaluate) 기능을 제공합니다. * **멀티 플랫폼 배포**: 학습과 평가가 완료된 모델은 Amazon SageMaker 또는 Amazon Bedrock 중 원하는 환경을 선택하여 원클릭으로 배포할 수 있습니다. * **보안 및 암호화**: 네트워크 보안 설정 및 저장 볼륨 암호화 등 기업용 애플리케이션에 필요한 고급 보안 설정을 동일하게 지원합니다. 이 서비스는 인프라 구축의 복잡성 때문에 최신 LLM 성능 최적화를 망설였던 기업에게 매우 실용적인 대안입니다. 특히 RLVR이나 RLAIF 같은 고난도 강화 학습 기법을 복잡한 설정 없이 테스트해보고 싶은 팀에게 SageMaker AI의 서버리스 워크플로우를 우선적으로 활용해 볼 것을 추천합니다.

aws

Amazon SageMaker HyperPod에서 체크포 (새 탭에서 열림)

Amazon SageMaker HyperPod은 대규모 AI 모델 학습의 효율성을 극대화하기 위해 '체크포인트리스(Checkpointless) 학습'과 '엘라스틱(Elastic) 학습' 기능을 새롭게 출시했습니다. 이 기술들은 하드웨어 장애 발생 시 복구 시간을 획기적으로 단축하고 클러스터 자원 활용도를 자동 최적화하여 전체 개발 주기를 대폭 앞당깁니다. 이를 통해 엔지니어는 인프라 관리 부담에서 벗어나 모델 성능 고도화와 시장 출시 속도 향상에 더욱 집중할 수 있습니다. ### 체크포인트리스 학습을 통한 중단 없는 상태 복구 기존의 체크포인트 기반 복구는 작업 종료, 재시작, 네트워크 설정, 체크포인트 검색 및 로드 등 복잡한 단계를 거치느라 최대 1시간 이상의 다운타임이 발생하곤 했습니다. 체크포인트리스 학습은 이러한 병목 현상을 해결하기 위해 다음과 같은 기술적 요소를 도입했습니다. * **피어 투 피어(P2P) 상태 복제**: 모델의 상태를 클러스터 내의 건강한 노드(Peer)에 실시간으로 복제하여 저장하며, 장애 발생 시 체크포인트를 불러오는 대신 이웃 노드로부터 즉시 상태를 복구합니다. * **복구 시간 단축**: 전통적인 방식 대비 복구 시간을 분 단위로 줄였으며, 내부 테스트 결과 2,000개 이상의 GPU 환경에서도 다운타임을 80% 이상 감소시키는 성과를 보였습니다. * **4가지 핵심 구성 요소**: 집합 통신 초기화 최적화, 캐싱이 가능한 메모리 매핑 데이터 로딩, 프로세스 내 복구(In-process recovery), 그리고 P2P 상태 복제 기술이 유기적으로 결합되어 작동합니다. * **검증된 확장성**: 수만 개의 가속기를 활용한 Amazon Nova 모델 학습에 이미 성공적으로 적용되어 대규모 환경에서의 안정성을 입증했습니다. ### 자원 활용을 극대화하는 엘라스틱 학습 엘라스틱 학습은 클러스터의 가용 자원 상태에 따라 학습 워크로드의 규모를 유연하게 조절하는 기능입니다. 인프라의 가변적인 상황에 맞춰 학습 효율을 최대로 끌어올립니다. * **자동 확장 및 축소**: 클러스터 내에 유휴 자원이 발생하면 학습 규모를 자동으로 확장하고, 추론 서비스와 같은 고우선순위 작업이 몰릴 때는 자원을 즉시 반납하며 축소합니다. * **운영 효율성**: 매주 수동으로 인프라 설정을 변경하던 엔지니어링 시간을 절약할 수 있으며, 클러스터 활용도를 높여 전체 학습 완료 시간을 단축합니다. * **우선순위 기반 할당**: 비즈니스 요구사항에 따라 자원을 재배치함으로써 고비용의 컴퓨팅 자원을 낭비 없이 사용할 수 있도록 지원합니다. ### 실용적인 권장 사항 수천 개의 GPU를 사용하는 초거대 모델 학습 환경에서는 하드웨어 장애가 빈번하게 발생할 수밖에 없습니다. 인프라 장애로 인한 학습 중단 리스크를 최소화하고 싶은 팀은 SageMaker HyperPod의 체크포인트리스 학습을 도입하여 복구 골든타임을 확보할 것을 권장합니다. 특히 가변적인 인프라 환경에서 비용 효율성을 중시한다면 엘라스틱 학습 기능을 활성화하여 클러스터 유휴 자원을 100% 활용하는 전략이 유효할 것입니다.

aws

Amazon S3 Tables를 위한 복 (새 탭에서 열림)

AWS가 Amazon S3 Tables를 위한 '인텔리전트 티어링(Intelligent-Tiering)'과 '복제(Replication)' 기능을 새롭게 출시했습니다. 이번 업데이트를 통해 사용자는 데이터 액세스 패턴에 따라 스토리지 비용을 자동으로 최적화하고, 별도의 복잡한 아키텍처 없이도 여러 리전 및 계정 간에 Apache Iceberg 테이블 복제본을 일관되게 유지할 수 있습니다. 결과적으로 대규모 정형 데이터 관리의 비용 효율성과 글로벌 데이터 가용성이 획기적으로 향상되었습니다. **S3 테이블 인텔리전트 티어링을 통한 비용 최적화** * 데이터 액세스 빈도에 따라 Frequent Access, Infrequent Access(40% 저렴), Archive Instant Access(IA보다 68% 저렴) 등 세 가지 저지연 계층으로 데이터를 자동 이동합니다. * 30일 동안 접근이 없으면 IA 계층으로, 90일이 지나면 AIA 계층으로 전환되며, 이 과정에서 애플리케이션 코드 수정이나 성능 저하가 발생하지 않습니다. * 테이블 압축(Compaction), 스냅샷 만료, 미참조 파일 제거와 같은 유지 관리 작업은 데이터의 액세스 계층에 영향을 주지 않고 수행됩니다. * 특히 압축 작업은 Frequent Access 계층의 데이터만 대상으로 실행되어, 활발하게 쿼리되는 데이터의 성능은 높이고 차가운(Cold) 데이터에 대한 불필요한 처리 비용은 줄입니다. * AWS CLI의 `put-table-bucket-storage-class` 명령을 사용해 테이블 버킷 수준에서 기본 스토리지 클래스를 설정할 수 있습니다. **리전 및 계정 간 S3 테이블 복제 지원** * 수동 동기화 없이도 AWS 리전 및 계정 간에 일관된 Apache Iceberg 읽기 전용 복제본(Read Replica)을 생성하고 유지합니다. * 소스 테이블에서 발생한 모든 업데이트를 시간 순서대로 복제하며, Iceberg 테이블의 핵심인 스냅샷의 부모-자식 관계를 그대로 보존합니다. * 소스 테이블이 업데이트된 후 몇 분 이내에 복제본에 반영되며, 각 복제본은 소스와 독립적인 암호화 설정 및 데이터 보존 정책을 가질 수 있습니다. * 전 세계에 분산된 팀들이 로컬 리전에서 복제된 데이터를 쿼리하게 함으로써 네트워크 지연 시간을 최소화하고 데이터 보호 및 규정 준수 요건을 충족합니다. 대규모 Iceberg 데이터셋을 운영하는 조직은 인텔리전트 티어링을 통해 운영 부담 없이 스토리지 비용을 절감하고, 복제 기능을 활용해 글로벌 규모의 데이터 메쉬 아키텍처를 보다 쉽게 구축할 수 있습니다. 특히 데이터가 늘어남에 따라 수동으로 비용을 관리하기 어려운 환경에서 이 두 기능은 필수적인 관리 도구가 될 것입니다.

aws

Amazon S3 Storage Lens, 성능 (새 탭에서 열림)

Amazon S3 Storage Lens에 성능 지표 추가, 수십억 개의 접두사(Prefix) 지원, S3 테이블(S3 Tables)로의 데이터 내보내기 등 세 가지 주요 기능이 업데이트되었습니다. 이번 업데이트를 통해 사용자는 스토리지 성능과 사용 패턴에 대한 더 깊은 통찰력을 얻고, 데이터 기반의 의사결정을 통해 애플리케이션 성능 최적화와 비용 절감을 실현할 수 있습니다. 특히 대규모 데이터 세트 관리의 복잡성을 해결하고 분석 효율성을 대폭 향상시킨 것이 특징입니다. ### 8가지 신규 성능 지표 카테고리 도입 * **성능 병목 현상 파악**: 읽기/쓰기 요청 크기, 객체 크기 분포, 동시 PUT 503 에러 등의 지표를 통해 애플리케이션 성능을 저하시키는 요인을 식별합니다. * **최적화 가이드 제공**: 작은 객체가 성능을 저하시키는 경우 객체 번들링이나 S3 Express One Zone 스토리지 클래스 활용을 제안하며, 대용량 요청은 멀티파트 업로드(MPU)나 AWS CRT 사용을 권장합니다. * **데이터 전송 효율성 분석**: 리전 간 데이터 전송량과 요청 수를 확인하여 교차 리전 액세스로 인한 성능 저하 및 비용 증가 문제를 파악하고, 컴퓨팅 자원과 데이터의 배치를 최적화할 수 있습니다. * **활성 데이터 식별**: 특정 기간 내에 액세스된 고유 객체의 비율을 분석하여 빈번하게 사용되는 '핫 데이터'를 고성능 스토리지 계층으로 이동시키는 근거로 활용합니다. ### 수십억 개 규모의 접두사(Prefix) 분석 지원 * **대규모 확장성**: 기존의 분석 범위를 뛰어넘어 수십억 개의 접두사가 포함된 거대한 스토리지 구조에서도 세밀한 가시성을 제공합니다. * **계층적 가시성**: 조직, 계정, 버킷뿐만 아니라 매우 깊고 복잡한 접두사 수준에서도 성능 및 사용량 지표를 모니터링할 수 있어 대규모 데이터 레이크 관리에 용이합니다. ### S3 테이블로의 직접 내보내기 및 분석 통합 * **데이터 통합 분석**: S3 Storage Lens의 지표 데이터를 신규 기능인 S3 Tables로 직접 내보낼 수 있어, 별도의 복잡한 ETL 과정 없이도 대규모 메타데이터를 효율적으로 쿼리할 수 있습니다. * **SQL 기반 분석**: 내보낸 데이터를 S3 테이블 형식으로 저장하면 표준 SQL을 사용하여 장기적인 스토리지 트렌드를 분석하거나 커스텀 보고서를 생성하기가 훨씬 수월해집니다. S3 Storage Lens의 고급 티어(Advanced Tier)를 활성화하면 이러한 신규 성능 지표를 즉시 활용할 수 있습니다. 특히 성능에 민감한 워크로드를 운영 중이라면, '고유 객체 액세스' 지표를 통해 자주 사용되는 데이터를 식별하고 이를 S3 Express One Zone으로 이전하여 지연 시간을 최소화하고 비용 효율성을 극대화할 것을 추천합니다.

aws

Amazon Bedrock AgentCore (새 탭에서 열림)

Amazon Bedrock AgentCore는 AI 에이전트가 자율적으로 동작할 때 발생할 수 있는 보안 및 품질 제어 문제를 해결하기 위해 정책 제어와 품질 평가 등 새로운 기능을 도입했습니다. 이를 통해 개발자는 에이전트의 권한을 세밀하게 제한하고 실제 운영 환경에서의 성능을 지속적으로 모니터링함으로써, 기업용 수준의 신뢰할 수 있는 AI 에이전트를 대규모로 안전하게 배포할 수 있습니다. **신규 정책 제어(Policy)를 통한 보안 경계 구축** * AgentCore Gateway를 활용하여 에이전트가 도구(Tool)를 호출하기 직전에 정책에 따른 세밀한 권한 검사를 수행함으로써 부적절한 데이터 접근이나 승인되지 않은 작업을 차단합니다. * 정책 제어는 에이전트의 자체 추론 루프(Reasoning Loop) 외부에서 독립적으로 작동하므로, 에이전트의 판단과 상관없이 비즈니스 가드레일을 강제로 적용할 수 있습니다. * 에이전트를 통제 가능한 자율적 행위자로 정의하여 민감한 시스템이나 데이터와 상호작용할 때 발생할 수 있는 리스크를 최소화합니다. **품질 평가(Evaluations)를 활용한 에이전트 신뢰도 검증** * 에이전트의 실제 행동 데이터를 기반으로 정확성(Correctness)과 유용성(Helpfulness) 등의 핵심 지표를 측정할 수 있는 기본 평가 도구를 제공합니다. * 기업의 특정 비즈니스 요구사항에 맞춘 커스텀 평가 지표를 생성하여 실제 고객 대응이나 내부 업무 프로세스에 적합한지 정밀하게 분석할 수 있습니다. * 에이전트 배포 전후의 성능을 정량화함으로써 불확실성을 제거하고 지속적인 품질 개선을 위한 데이터 기반의 인사이트를 확보합니다. **메모리 및 런타임 기능 확장을 통한 사용자 경험 강화** * **에피소드형 메모리(Episodic Memory):** 에이전트가 과거의 경험을 장기적으로 기억하고 학습하여, 유사한 상황이 발생했을 때 일관성 있고 최적화된 해결책을 제시할 수 있도록 돕습니다. * **양방향 스트리밍(Bidirectional Streaming):** 사용자와 에이전트가 동시에 말을 주고받는 자연스러운 대화 흐름을 지원하여 실시간 음성 에이전트 서비스의 반응성을 높였습니다. AI 에이전트의 강력한 자율성을 비즈니스 현장에 도입하려는 조직은 AgentCore의 새로운 정책 제어와 평가 기능을 통해 운영 안정성을 확보해야 합니다. 특히 대규모 데이터 처리나 실시간 고객 응대가 필요한 환경에서는 에피소드형 메모리와 양방향 스트리밍 기능을 결합하여 단순한 챗봇 이상의 고도화된 에이전트 서비스를 구축할 것을 추천합니다.

aws

AWS Lambda durable functions를 사용하여 멀 (새 탭에서 열림)

AWS Lambda Durable Functions의 출시로 개발자들은 별도의 상태 관리 인프라를 구축하지 않고도 복잡한 다단계 애플리케이션과 AI 워크플로우를 익숙한 Lambda 환경에서 구현할 수 있게 되었습니다. 이 기능은 '체크포인트 및 재실행(Checkpoint and Replay)' 메커니즘을 통해 실행 상태를 자동으로 추적하며, 실행 도중 실패가 발생하더라도 마지막 완료 지점부터 작업을 재개합니다. 특히 대기 상태에서는 컴퓨팅 비용이 발생하지 않으면서도 최대 1년까지 실행을 일시 중단할 수 있어, 결제 처리나 사용자 승인이 필요한 장기 프로세스에 최적화된 솔루션을 제공합니다. ### 지속성 실행(Durable Execution)의 핵심 메커니즘 * **체크포인트 및 재실행:** Durable execution SDK를 사용하면 함수가 실행될 때마다 진행 상황이 자동으로 기록됩니다. 예기치 않은 오류로 실행이 중단되더라도 Lambda는 처음부터 핸들러를 다시 실행하되, 이미 완료된 단계는 스킵하고 마지막 체크포인트부터 비즈니스 로직을 이어갑니다. * **비용 효율적인 대기:** 실행 중 특정 지점에서 실행을 일시 중단하면 컴퓨팅 자원 할당이 해제되어 유휴 비용이 발생하지 않습니다. 이후 정의된 조건이 충족되면 자동으로 실행이 재개됩니다. ### 워크플로우 제어를 위한 주요 프리미티브(Primitives) * **context.step():** 비즈니스 로직에 자동 재시도 및 체크포인트 기능을 추가합니다. 해당 단계가 성공적으로 완료되면 이후 재실행 시 다시 수행되지 않도록 보장합니다. * **context.wait():** 지정된 기간 동안 함수의 실행을 중단합니다. 최대 1년까지 대기가 가능하며, 대기 기간 동안에는 비용이 청구되지 않습니다. * **create_callback():** 외부 API 응답이나 사람의 직접적인 승인과 같은 외부 이벤트를 기다릴 수 있는 콜백을 생성합니다. * **wait_for_condition():** REST API 폴링 등을 통해 특정 조건이 충족될 때까지 실행을 일시 정지합니다. * **parallel() 및 map():** 복잡한 병렬 처리 및 동시성 유스케이스를 지원하여 효율적인 리소스 활용을 돕습니다. ### 서비스 도입 시 고려사항 * **설정 방식:** Durable Functions 기능은 Lambda 함수를 처음 생성하는 단계에서만 활성화할 수 있으며, 기존에 이미 생성된 함수에는 소급 적용이 불가능합니다. * **개발 환경:** 함수 생성 시 'Durable execution' 옵션을 활성화한 후, 코드 내에 오픈 소스로 제공되는 Durable Execution SDK를 포함하여 비즈니스 로직을 작성해야 합니다. * **활용 사례:** 주문 처리 프로세스, AI 에이전트의 다단계 추론 오케스트레이션, 인적 승인이 필요한 결재 시스템 등 상태 유지가 필수적인 워크로드에 강력한 이점을 제공합니다. AWS Lambda Durable Functions는 Step Functions와 같은 외부 오케스트레이션 도구 없이도 코드 수준에서 상태ful한 워크플로우를 관리할 수 있게 해줍니다. 단순한 이벤트 처리를 넘어 긴 호흡의 비즈니스 로직을 관리해야 하는 백엔드 개발자나 AI 엔지니어에게 매우 실용적인 도구가 될 것입니다.