Google Research / foundation-models

7 개의 포스트

google

Accelerating the magic cycle of research breakthroughs and real-world applications (새 탭에서 열림)

구글 리서치는 강력한 AI 모델과 에이전트 도구를 통해 기초 과학 연구가 실제 서비스로 연결되고, 이것이 다시 새로운 연구 동력으로 이어지는 '연구의 마법 사이클(Magic Cycle of Research)'을 가속화하고 있습니다. 특히 지학, 유전학, 양자 컴퓨팅 분야에서 거둔 최근의 성과들은 AI가 복잡한 데이터를 이해하고 추론하는 단계를 넘어 인류가 직면한 거대한 과제들을 해결하는 핵심 도구로 진화했음을 보여줍니다. 이러한 기술적 진보는 오픈 플랫폼과 협력을 통해 전 세계 학계와 산업계로 확산되며 실질적인 사회적 영향력을 창출하고 있습니다. ### Google Earth AI: 거대 언어 모델 기반의 지리공간 추론 * 홍수, 산불, 대기 질 등 다양한 지리공간 AI 모델을 통합하여 지구 전체의 변화를 전례 없는 수준으로 파악할 수 있는 인프라를 구축했습니다. * '지리공간 추론 에이전트(Geospatial Reasoning Agent)'를 도입하여, 전문가가 아니더라도 자연어를 통해 복잡한 지리 데이터를 분석하고 공급망 관리나 위기 대응에 필요한 통찰을 얻을 수 있게 했습니다. * 하천 홍수 예측 모델의 범위를 전 세계 150개국, 20억 명 이상의 인구 거주 지역으로 대폭 확장하여 재난 대비 능력을 강화했습니다. * 새로운 원격 감지 파운데이션 모델과 인구 역학 모델을 공개하고, 구글 어스에 제미나이(Gemini) 기능을 탑재하여 위성 이미지 내 객체 검색 성능을 높였습니다. ### DeepSomatic 및 유전학 연구: 정밀 의료를 통한 암 정복 * 네이처 바이오테크놀로지에 발표된 'DeepSomatic'은 종양 내에서 발생하는 미세한 체세포 변이(Somatic mutations)를 정확하게 식별하여 맞춤형 암 치료를 지원합니다. * 지난 10년간의 유전학 연구 노하우를 결합하여 인간 및 비인간 게놈 지도를 정교하게 매핑하고, 질병의 근본 원인을 파악하는 데 기여하고 있습니다. * 'Cell2Sentence' 기술을 통해 단일 세포 데이터를 언어 형태로 변환함으로써, 거대 언어 모델(LLM)이 생물학적 데이터를 학습하고 질병의 메커니즘을 추론할 수 있는 환경을 조성했습니다. ### 양자 에코(Quantum Echoes): 양자 시스템을 활용한 물리 법칙 시뮬레이션 * 양자 프로세서를 단순한 계산기가 아닌, 복잡한 물리 현상을 관찰하고 시뮬레이션하는 강력한 도구로 활용하고 있습니다. * '양자 에코' 기법을 통해 양자 시스템 내에서 정보가 어떻게 확산되고 소멸되는지(Information Scrambling)를 정밀하게 측정하는 데 성공했습니다. * 이러한 성과는 양자 컴퓨팅의 성능을 검증하는 벤치마크로 활용될 뿐만 아니라, 기존 고전 컴퓨터로는 불가능했던 물리적 난제들을 해결하는 가교 역할을 합니다. AI는 이제 단순한 소프트웨어 기술을 넘어 과학적 발견의 속도를 기하급수적으로 높이는 '가속기'가 되었습니다. 구글이 공개한 DeepSomatic과 같은 도구들과 지구 환경 모델들을 적극 활용한다면, 의료 및 환경 분야의 복잡한 문제들을 해결하는 데 있어 기술적 진입 장벽을 낮추고 혁신적인 솔루션을 빠르게 도출할 수 있을 것입니다.

google

Google Earth AI: Unlocking geospatial insights with foundation models and cross-modal reasoning (새 탭에서 열림)

구글 어스 AI(Google Earth AI)는 최신 제미나이(Gemini) 모델 기반의 추론 에이전트와 지리 공간 파운데이션 모델을 결합하여, 지구 규모의 복잡한 문제에 대해 실질적인 통찰을 제공하는 생태계입니다. 이 시스템은 위성 이미지, 인구 통계, 환경 데이터 등 서로 다른 영역의 정보를 통합 분석함으로써 기존 단일 모델로는 해결하기 어려웠던 교차 도메인 추론을 가능하게 합니다. 구글은 이를 통해 원격 탐사 및 인구 역학 분야에서 상태 최첨단(SOTA) 성능을 달성했으며, 구글 어스와 구글 클라우드를 통해 이러한 기능을 개발자와 기업에 확대 제공하고 있습니다. **원격 탐사 파운데이션 모델의 혁신** * 시각-언어 모델(VLM), 개방형 어휘 객체 탐지(Open-vocabulary detection), 적응형 비전 백본의 세 가지 핵심 기능을 통해 위성 이미지 분석 속도와 정확도를 대폭 향상했습니다. * 사용자는 "폭풍 후 침수된 모든 도로 찾기"와 같은 자연어 질의를 통해 고해상도 항공 이미지에서 즉각적이고 정확한 답변을 얻을 수 있습니다. * 텍스트 기반 이미지 검색 작업에서 기존 대비 평균 16% 이상의 성능 향상을 보였으며, 미학습 객체에 대한 제로샷(Zero-shot) 탐지 정확도는 기존 베이스라인 모델보다 2배 이상 높습니다. **인구 역학 및 모빌리티 AI 분석** * 인구 역학 파운데이션(Population Dynamics Foundations) 모델을 통해 사람과 장소 간의 복잡한 상호작용을 이해하고, 시간에 따른 인구 이동 및 활동 변화를 분석합니다. * 전 세계 17개국에 걸친 일관된 임베딩 데이터와 매월 업데이트되는 시계열 정보를 제공하여, 인구 밀도, 수목 피복도, 야간 조명 등 다양한 지표를 정밀하게 예측합니다. * 실제 활용 사례로 옥스퍼드 대학의 연구에 따르면, 브라질의 뎅기열 확산 예측 모델에 이 임베딩을 적용했을 때 12개월 장기 예측 정확도(R²)가 0.456에서 0.656으로 크게 개선되었습니다. **지능형 공간 추론 에이전트의 역할** * 제미나이 모델을 기반으로 하는 공간 추론 에이전트는 복잡하고 추상적인 질문을 단계별 실행 계획으로 분해하는 지능형 오케스트레이터 역할을 수행합니다. * 에이전트는 파운데이션 모델 호출, 방대한 데이터 저장소 쿼리, 지리 공간 분석 도구 활용 등을 직접 실행하며, 각 단계에서 도출된 결과를 종합하여 최종적인 해답을 제시합니다. * 예를 들어 "허리케인 상륙 가능성이 높은 지역과 가장 취약한 공동체는 어디인가?"라는 질문에 대해 이미지, 환경, 인구 데이터를 융합 분석하여 구체적인 대비책을 도출할 수 있습니다. 구글 어스 AI는 기후 변화 대응, 재난 관리, 도시 계획 등 전 지구적 과제를 해결하려는 기업과 연구자들에게 강력한 도구를 제공합니다. 현재 구글은 개발자와 기업 사용자를 대상으로 이 새로운 기능에 대한 접근 권한을 확대하고 있으므로, 고도화된 공간 데이터 분석이 필요한 조직은 구글 클라우드 및 구글 어스 AI 웹사이트를 통해 기술 도입을 검토할 것을 권장합니다.

google

Time series foundation models can be few-shot learners (새 탭에서 열림)

구글 리서치는 시계열 파운데이션 모델인 TimesFM에 '인-맥락 파인튜닝(In-Context Fine-tuning, ICF)' 기법을 도입하여, 추론 시점의 몇 가지 예시만으로 예측 성능을 극대화하는 퓨샷 학습(Few-shot Learning) 접근법을 제안했습니다. 기존의 제로샷 모델이 가진 한계를 극복하기 위해 지속적인 사전 학습(Continued Pre-training)을 활용했으며, 이를 통해 사용자가 복잡한 추가 학습을 수행하지 않고도 태스크별로 최적화된 정교한 예측 결과를 얻을 수 있음을 입증했습니다. ## 기존 모델의 한계와 퓨샷 학습의 필요성 * 시계열 예측은 비즈니스 전반에 필수적이지만, 기존 방식은 각 태스크마다 특화된 모델을 개별적으로 구축해야 하므로 시간과 비용이 많이 소모됨. * 제로샷 모델인 TimesFM은 별도 학습 없이도 준수한 성능을 보이지만, 관련 있는 과거 데이터나 유사한 사례(예: 인근 도로의 교통량)를 참고하여 성능을 더 높일 수 있는 유연성이 부족했음. * TimesFM-ICF는 모델이 추론 시점에 주어진 몇 개의 관련 예시(In-Context Examples)로부터 스스로 학습하여 예측에 반영하도록 설계됨. ## 구분자 토큰(Separator Token)을 통한 데이터 혼선 방지 * 서로 다른 출처의 데이터를 단순히 나열하여 입력하면 모델이 이를 하나의 연속된 흐름으로 오해하여 잘못된 패턴(예: 갑작스러운 급증락)을 학습할 위험이 있음. * 이를 해결하기 위해 학습 가능한 '공통 구분자 토큰'을 도입하여 각 예시 데이터 사이의 경계를 명확히 설정함. * 모델은 이 구분자를 통해 개별 예시들을 독립적으로 인식하며, 각 데이터의 고유한 패턴만 추출하여 현재 예측하려는 시계열에 적용할 수 있게 됨. ## 모델 구조 및 지속적 사전 학습 방식 * TimesFM의 기본 구조인 패치 데코더(Patched Decoder)를 유지하며, 32개의 시점을 하나의 토큰으로 변환한 뒤 트랜스포머 스택을 거쳐 128개 시점을 예측함. * 인-맥락 예시와 구분자 토큰이 포함된 새로운 데이터셋으로 '지속적 사전 학습'을 수행하여 모델이 예시로부터 정보를 얻는 방법을 익히게 함. * 인과적 자기 주의 집중(Causal Self Attention, CSA) 레이어를 통해 미래 데이터를 참조하지 않으면서도 과거의 맥락 정보를 효율적으로 통합함. ## 성능 검증 및 벤치마크 결과 * 모델이 학습 과정에서 한 번도 본 적 없는 23개의 데이터셋을 대상으로 성능을 평가함. * 실험 결과, TimesFM-ICF는 기존 제로샷 방식보다 월등한 성능을 보였으며, 훨씬 더 복잡한 과정인 지도 파인튜닝(Supervised Fine-tuning)과 대등한 수준의 정확도를 기록함. * 특히 시계열 데이터 처리 능력이 부족한 GPT-4o와 같은 일반적인 대규모 언어 모델(LLM)들에 비해 훨씬 더 정교하고 효율적인 예측 성능을 입증함. TimesFM-ICF는 시계열 예측 분야에서 모델의 재학습 없이도 도메인별 맥락을 즉각적으로 반영할 수 있는 실용적인 해결책을 제시합니다. 사용자는 예측하고자 하는 데이터와 유사한 소수의 샘플을 함께 입력하는 것만으로도 전문가 수준의 최적화된 예측 결과를 얻을 수 있습니다.

google

SensorLM: Learning the language of wearable sensors (새 탭에서 열림)

구글 리서치가 발표한 SensorLM은 약 6,000만 시간 분량의 방대한 웨어러블 센서 데이터를 자연어와 연결하여 학습한 새로운 유형의 센서-언어 파운데이션 모델입니다. 이 모델은 스마트워치 등이 수집하는 복잡한 센서 신호를 인간이 이해할 수 있는 정교한 설명으로 변환함으로써, 단순한 수치 기록을 넘어 행동의 맥락과 원인을 파악하는 헬스케어의 새로운 지평을 열었습니다. 대규모 멀티모달 학습을 통해 제로샷 활동 인식 및 텍스트 생성 분야에서 기존 모델을 뛰어넘는 성능을 입증하며 개인 맞춤형 건강 관리의 가능성을 제시합니다. **데이터셋 구축 및 자동화된 캡션 생성** - 127개국 10만 명 이상의 동의를 얻은 익명화된 핏빗(Fitbit) 및 픽셀 워치 데이터를 활용하여 총 5,970만 시간 분량의 역대 최대 규모 센서-언어 데이터셋을 구축했습니다. - 사람이 일일이 데이터를 라벨링하는 비용 문제를 해결하기 위해, 센서 데이터의 통계 정보와 추세, 주요 이벤트를 분석하여 자동으로 상세한 설명을 생성하는 '계층적 파이프라인'을 개발했습니다. - 이를 통해 기존 연구들보다 수십 배 큰 규모의 데이터를 확보함으로써 고차원 센서 신호와 자연어 사이의 미세한 상관관계를 학습할 수 있는 기반을 마련했습니다. **대조 학습과 생성 학습의 통합 아키텍처** - 센서 조각과 텍스트 설명을 매칭하는 '대조 학습(Contrastive Learning)'을 적용하여 수영이나 근력 운동 같은 서로 다른 활동을 정밀하게 구분하는 능력을 갖췄습니다. - 고차원 센서 신호로부터 직접 맥락에 맞는 텍스트 캡션을 생성하는 '생성형 사전 학습(Generative Pre-training)'을 결합하여 데이터의 의미를 능동적으로 해석하도록 설계했습니다. - 두 학습 전략을 단일 프레임워크로 통합함으로써 센서 데이터의 통계적 특성뿐만 아니라 구조적, 의미론적 차원까지 아우르는 깊이 있는 이해가 가능해졌습니다. **활동 인식 및 교차 모달 검색 능력** - 별도의 미세 조정(Fine-tuning) 없이도 20가지 활동을 정확히 분류하는 제로샷(Zero-shot) 성능을 보여주며, 일반적인 거대 언어 모델(LLM)보다 월등히 높은 정확도를 기록했습니다. - 소량의 데이터만으로 새로운 작업에 적응하는 퓨샷(Few-shot) 학습 능력이 뛰어나, 개인별로 다른 활동 패턴이나 특수한 건강 상태에도 유연하게 대응할 수 있습니다. - 텍스트로 특정 센서 패턴을 찾거나 반대로 센서 데이터를 통해 자연어 설명을 추출하는 '교차 모달 검색' 기능을 통해 전문가의 데이터 분석 효율성을 극대화했습니다. **고도화된 상황 인식 캡션 생성** - 웨어러블 기기에서 발생하는 복잡한 신호를 입력받아 계층적이고 문맥에 맞는 자연어 설명을 생성하며, 기존 비전담 LLM 대비 사실 관계가 정확하고 일관성 있는 텍스트를 출력합니다. - 단순한 활동 요약을 넘어 센서 신호에 담긴 통계적 추이와 구조적 변화를 인간의 언어로 번역함으로써 사용자가 자신의 건강 데이터를 훨씬 직관적으로 이해할 수 있도록 돕습니다. SensorLM은 단순히 수치를 기록하는 기기를 넘어 사용자의 상태를 이해하고 설명해 주는 지능형 건강 비서로의 진화를 예고합니다. 이러한 기술은 향후 전문가 수준의 건강 분석 도구나 개인 맞춤형 웰니스 서비스에 핵심 기술로 활용될 것으로 기대됩니다.

google

LSM-2: Learning from incomplete wearable sensor data (새 탭에서 열림)

Google Research는 실제 환경의 웨어러블 센서 데이터에서 빈번하게 발생하는 데이터 공백(missingness) 문제를 해결하기 위해 LSM-2(Large Sensor Model-2)를 공개했습니다. 이 모델은 데이터가 불완전하더라도 이를 억지로 채우거나 삭제하지 않고, '적응형 상속 마스킹(AIM)' 기법을 통해 데이터의 결손 자체를 자연스러운 특징으로 학습합니다. 그 결과, LSM-2는 대규모 데이터셋을 바탕으로 분류, 회귀, 생성 등 다양한 건강 관련 태스크에서 기존의 보간(imputation) 방식보다 뛰어난 성능과 견고함을 입증했습니다. **웨어러블 데이터의 결손 문제와 한계** * 충전, 기기 미착용, 움직임에 의한 노이즈, 배터리 절약 모드 등으로 인해 실제 웨어러블 센서 데이터에는 필연적으로 공백이 발생합니다. * 연구팀이 분석한 160만 개의 일일 데이터 창 중에서 결손율이 0%인 샘플은 단 하나도 없었을 정도로 데이터의 불완전성은 보편적인 문제입니다. * 기존의 자가 지도 학습(SSL)은 완벽한 데이터를 가정하며, 결손이 있을 경우 데이터를 임의로 채우는 보간법을 쓰거나 불완전한 샘플을 삭제해 버리는데, 이는 데이터 편향을 초래하거나 귀중한 정보를 손실하는 결과를 낳습니다. **AIM(Adaptive and Inherited Masking) 프레임워크** * AIM은 결손된 데이터를 오류로 처리하는 대신, 이를 데이터의 고유한 속성으로 간주하고 직접 학습하는 새로운 자가 지도 학습 방식입니다. * 마스킹 방식은 데이터에 원래 존재하는 공백인 '상속된 마스크(Inherited Mask)'와 학습을 위해 의도적으로 가린 '인공적 마스크(Artificial Mask)'를 결합하여 구성됩니다. * **토큰 드롭아웃(Token Drop-out):** 계산 효율성을 위해 고정된 비율의 마스킹된 토큰을 인코더 처리 과정에서 제외합니다. * **어텐션 마스킹(Attention Masking):** 고정된 비율을 초과하여 발생하는 가변적인 데이터 공백은 트랜스포머 블록 내에서 어텐션 마스킹을 통해 유연하게 처리합니다. **LSM-2의 학습 및 성능 지표** * 약 6만 명 이상의 참가자로부터 수집한 4,000만 시간 분량의 익명화된 웨어러블 데이터(Fitbit 및 Pixel Watch)를 사용하여 LSM-2를 사전 학습했습니다. * LSM-2는 심박수 신호, 수면 패턴, 활동량 등 다중 모드(multimodal) 데이터를 통합적으로 이해하며, 이전 모델인 LSM-1보다 향상된 성능을 보여줍니다. * 특히 센서가 일시적으로 작동하지 않거나 특정 시간대 데이터가 통째로 누락된 상황에서도, 보간법을 사용한 모델들에 비해 성능 저하가 훨씬 적고 견고한 예측력을 유지합니다. **실용적인 결론 및 추천** 현실 세계의 웨어러블 기기 데이터를 다루는 개발자나 연구자라면, 불완전한 데이터를 정제하거나 채우는 데 리소스를 쏟기보다 LSM-2와 같이 결손 자체를 학습 프로세스에 통합하는 접근법을 고려해야 합니다. AIM 기법은 데이터의 가변적인 파편화를 자연스럽게 수용하므로, 고혈압 예측과 같은 실제 임상적 다운스트림 태스크에서 더욱 정확하고 일반화된 결과를 도출하는 데 효과적입니다.

google

Introducing Mobility AI: Advancing urban transportation (새 탭에서 열림)

구글 리서치는 급격한 도시화와 자율주행, 전자상거래 확산 등 변화하는 교통 환경에 대응하기 위해 AI 기반의 차세대 교통 관리 프로그램인 'Mobility AI'를 발표했습니다. 이 프로그램은 측정, 시뮬레이션, 최적화라는 세 가지 핵심 기둥을 중심으로 도시 교통 시스템의 데이터를 분석하고, 정책 결정자와 엔지니어에게 실질적인 해결책을 제공하는 것을 목표로 합니다. 결과적으로 Mobility AI는 교통 체증 완화, 탄소 배출 감소, 그리고 도로 안전 강화를 통해 지속 가능한 도시 이동성을 실현하고자 합니다. ### 정밀 측정을 통한 교통 현황 및 이동 패턴 분석 - ML 기반의 혼잡 함수(Congestion Functions)를 통해 차량 통행량과 속도의 상관관계를 수학적으로 모델링하며, 전체 데이터가 아닌 일부 부동 차량 데이터(Floating car data)만으로도 도시 전역의 교통 흐름을 정밀하게 유추합니다. - 자기지도 학습(Self-supervised learning)을 활용한 지오스페이셜 임베딩 기술로 데이터가 부족한 지역에서도 지역적 특성과 공간적 관계를 파악하여 이동 패턴을 정교하게 이해합니다. - 인과 추론(Causal inference) 기술을 도입해 날씨나 공휴일 같은 복잡한 변수 속에서도 신호 체계 변경과 같은 특정 개입이 실제 교통 흐름에 미친 순수한 효과를 정확히 측정합니다. ### 고충실도 시뮬레이션을 활용한 디지털 트윈 구축 - 기존의 수동적이고 느린 시뮬레이션의 한계를 극복하기 위해, 머신러닝이 실제 도로 위 운전자들의 행동을 직접 학습하여 반영하는 'Traffic Simulation API'를 개발했습니다. - 고해상도 이동 데이터를 활용한 자동 보정 기술을 통해 도시 전체 규모의 '디지털 트윈'을 신속하게 생성하며, 이를 통해 새로운 교통 정책이나 인프라 변화의 결과를 가상 환경에서 미리 검증할 수 있습니다. - 대규모 이벤트 이후의 교통 흐름을 분석하거나 대중교통 및 보행자 환경 개선을 위한 다양한 시나리오를 고성능 시뮬레이션 환경에서 테스트하여 최적의 대안을 찾습니다. ### 실질적 개선을 위한 지능형 교통 최적화 - '그린 라이트(Green Light)' 프로젝트를 통해 AI가 기존 교차로의 신호 타이밍을 최적화함으로써 불필요한 정차를 줄이고 연료 소비 및 온실가스 배출을 감축하고 있습니다. - 현재 전 세계 3,000개 이상의 교차로에서 운영 중인 이 기술은 별도의 하드웨어 설치 없이 구글 맵의 데이터를 활용해 도시 당국에 효율적인 신호 조절 권장 사항을 제공합니다. - 교통 신호 제어 API(Traffic Signal Control API)를 통해 지자체가 직접 AI 기반의 최적화 제안을 받아 현장에 적용할 수 있도록 지원하며, 향후 연석 공간 관리나 화물 운송 최적화로 서비스 영역을 확장할 계획입니다. Mobility AI는 구글의 방대한 지리정보 데이터와 고도화된 AI 기술을 결합하여 공공 부문의 교통 문제를 해결하려는 혁신적인 시도입니다. 교통 당국은 이 플랫폼을 통해 단순한 현황 파악을 넘어 미래 변화를 과학적으로 예측하고, 데이터에 기반한 정책을 수립함으로써 시민들에게 더 안전하고 효율적인 이동 경험을 제공할 수 있을 것입니다.

google

Geospatial Reasoning: Unlocking insights with generative AI and multiple foundation models (새 탭에서 열림)

구글 리서치는 생성형 AI와 다중 파운데이션 모델을 결합하여 복잡한 지리 공간 문제를 해결하는 '지형 공간 추론(Geospatial Reasoning)' 연구 프레임워크를 공개했습니다. 이 시스템은 고해상도 원격 탐사 데이터, 인구 역학, 이동 경로 모델을 통합하여 전문 지식 없이도 자연어로 고차원적인 지리적 분석 결과를 도출할 수 있게 지원합니다. 이를 통해 재난 대응, 도시 계획, 기후 회복력 강화 등 다양한 분야에서 데이터 기반의 의사결정 속도를 획기적으로 높일 것으로 기대됩니다. **지형 공간 파운데이션 모델의 기술적 토대** * **원격 탐사 모델의 아키텍처**: Masked Autoencoders, SigLIP, MaMMUT, OWL-ViT 등 검증된 시각-언어 모델 구조를 원격 탐사 영역에 맞게 최적화하여 적용했습니다. * **다양한 데이터 학습**: 텍스트 설명과 바운딩 박스(Bounding Box) 주석이 포함된 고해상도 위성 및 항공 이미지를 대규모로 학습하여, 이미지와 객체에 대한 정교한 임베딩을 생성합니다. * **자연어 기반 제로샷(Zero-shot) 분류**: 별도의 추가 학습 없이 "태양광 패널이 있는 주거용 건물"이나 "통행 불가능한 도로"와 같은 자연어 검색만으로 특정 지형이나 시설을 찾아낼 수 있습니다. * **성능 검증 및 실전 투입**: 분류, 세그멘테이션, 객체 탐지 벤치마크에서 SOTA(최고 수준) 성능을 기록했으며, 구글의 실제 재난 대응 및 도시/농업 경관 매핑 프로젝트에서 그 효용성을 입증했습니다. **데이터 통합과 에이전트 기반 추론 프레임워크** * **다중 모델 결합**: 인구 행동과 환경의 상호작용을 분석하는 '인구 역학 파운데이션 모델(PDFM)'과 궤적 기반의 '모빌리티 모델'을 통합하여 다각적인 분석이 가능합니다. * **LLM 기반 에이전트 워크플로우**: Gemini와 같은 거대언어모델(LLM)이 복잡한 지리 공간 데이터를 관리하고 조율하는 에이전트 역할을 수행하여, 복잡한 분석 과정을 자동화합니다. * **인구 역학 데이터의 글로벌 확장**: 기존 미국 중심의 PDFM 데이터를 영국, 호주, 일본, 캐나다, 말라위 등으로 확장하여 전 세계적인 분석 기반을 마련 중입니다. * **산업 파트너십**: Airbus, Maxar, Planet Labs 등 글로벌 위성 데이터 기업들과 협력하여 실무 환경에서의 테스트를 진행하고 있습니다. 현재 구글은 '신뢰할 수 있는 테스터 프로그램'을 통해 해당 모델들에 대한 접근권을 제공하고 있습니다. 지리 공간 데이터 분석의 높은 진입 장벽을 낮추고자 하는 조직은 구글 리서치가 제공하는 파운데이션 모델 임베딩을 활용해 독자적인 분석 모델을 고도화하거나, 자연어 기반의 지형 추론 워크플로우를 실험적으로 도입해 보는 것을 권장합니다.