네이버 / llm

6 개의 포스트

naver

네이버 TV (새 탭에서 열림)

네이버는 복잡한 구조의 PDF 문서를 LLM이 정확하게 이해할 수 있도록 돕는 전용 파서인 'PaLADIN'을 개발했습니다. PaLADIN은 표, 차트, 텍스트가 혼재된 문서의 레이아웃을 정밀하게 분석하여 LLM이 처리하기 최적화된 데이터 형식으로 변환하는 데 중점을 둡니다. 이를 통해 증권사 리포트 요약과 같은 전문적인 영역에서 데이터 추출의 정확도를 높이고 AI 서비스의 신뢰성을 확보했습니다. **PaLADIN의 아키텍처와 핵심 기술 스택** * **레이아웃 분석 (Doclayout-Yolo):** 문서 내의 텍스트 영역, 표, 차트 등 각 요소의 위치를 파악하는 'Element-Detector' 역할을 수행하여 문서의 구조를 정의합니다. * **표 및 차트 추출 모델:** 표 구조 분석을 위해 `nemoretriever-table-structure-v1`을 사용하며, 시각적 정보가 중요한 차트 해석에는 `google/gemma3-27b-it` 모델을 활용해 데이터를 추출합니다. * **고성능 OCR 결합:** 네이버의 파파고 OCR 기술을 통합하여 문서 내 텍스트 정보를 정확하게 디지털화하며, 수치와 문자가 섞인 복잡한 본문도 정밀하게 복원합니다. * **파이프라인 최적화:** NVIDIA의 `nv-ingest` 아키텍처를 기반으로 설계를 고도화하여 대량의 PDF 문서를 신속하게 처리할 수 있는 추론 속도를 확보했습니다. **성능 평가 및 서비스 적용 사례** * **정밀한 성능 검증:** 단순 텍스트 추출을 넘어 표 구조 복원 능력과 파싱 속도를 다각도로 측정했으며, 기존 파서 대비 우수한 정확도를 입증했습니다. * **증권사 리포트 요약 서비스:** 수치와 그래프가 많은 증권 리포트를 분석하는 'AIB 증권사 리포트' 서비스에 적용되어, LLM이 잘못된 정보를 생성하는 할루시네이션(환각) 현상을 최소화했습니다. * **LLM as a Judge:** 요약 결과의 품질을 평가하기 위해 LLM을 평가자로 활용하는 방식을 도입, 서비스 적용 시의 실효성을 객관적으로 검토했습니다. **향후 개선 방향** * **정밀도 고도화:** 표 내부의 미세한 셀 좌표 인식 오류를 개선하고, 다양한 형태의 차트에서 데이터를 더 정확하게 뽑아낼 수 있도록 모델을 개선할 예정입니다. * **한국어 최적화:** 국내 사용자 환경에 맞춰 한국어 특화 모델의 성능을 지속적으로 강화하여 문서 이해의 완성도를 높여갈 계획입니다. PDF 내의 비정형 데이터를 정형화된 구조로 변환하는 것은 RAG(검색 증강 생성) 시스템의 성능을 결정짓는 핵심 요소입니다. 복잡한 표나 차트가 포함된 전문 문서를 다루는 서비스를 구축한다면, 단순한 텍스트 추출기를 넘어 레이아웃 분석 모델이 통합된 PaLADIN과 같은 전문 파이프라인 도입을 고려해볼 수 있습니다.

naver

네이버 TV (새 탭에서 열림)

네이버의 'NSona' 프로젝트는 LLM 기반의 멀티 에이전트 시스템을 통해 방대한 사용자 리서치 데이터를 실시간 협업 자원으로 전환하며, 서비스 기획과 실제 개발 사이의 간극을 혁신적으로 줄인 사례를 제시합니다. 디자이너, AI 리서처, 개발자가 협력하여 단순한 기술 구현을 넘어 사용자의 목소리를 생생하게 재현하는 페르소나 봇을 개발함으로써, AI가 도구를 넘어 협업의 주체가 될 수 있음을 증명했습니다. 이를 통해 팀은 사용자의 피드백을 실시간으로 서비스 개발 과정에 투영하고 의사결정의 효율성을 극대화하는 성과를 거두었습니다. **사용자 경험을 재현하는 페르소나 봇 "NSona"** * 기존 UX 리서치가 가진 일회성 데이터의 한계를 극복하고, 리서치 결과를 데일리 협업 과정에서 상시 활용할 수 있는 자산으로 전환하기 위해 기획되었습니다. * 사용자의 특성과 행동 양식을 학습한 페르소나 봇 'NSona'를 통해 기획자나 개발자가 언제든 사용자의 관점에서 서비스에 대한 의견을 물을 수 있는 환경을 구축했습니다. **에이전트 중심의 서비스 구조와 기술적 도전** * 단일 LLM 모델의 한계를 넘어, 특정 서비스 목적에 최적화된 'Agent 중심의 서비스 구조'를 설계하여 보다 정교한 사용자 재현을 시도했습니다. * Multi-Party 대화 시스템을 도입하여 여러 페르소나가 상호작용하며 복합적인 피드백을 제공할 수 있는 기술적 토대를 마련했습니다. * 일반적인 언어 모델 평가 지표 대신, 서비스의 맥락과 UX 요구사항을 반영한 'Service-specific' 평가 프로세스를 독자적으로 구축하여 모델의 품질을 관리했습니다. **AI 시대의 변화된 협업 방식과 R&R** * 전통적인 업무 경계를 허물고 디자이너는 프롬프트를 설계하며, 리서처는 로직을 에이전트 구조로 전환하고, 개발자는 AI를 비평의 대상으로 다루는 새로운 협업 모델을 실천했습니다. * 결과물의 완성도에만 집착하기보다 '어디서 시작점을 찍느냐'에 집중하며, AI를 개발 프로세스의 초기 단계부터 능동적인 파트너로 참여시켰습니다. * 이러한 과정은 직군 간의 선형적인 협업 구조를 유기적인 파장 형태의 협업 구조로 변화시키는 계기가 되었습니다. **사용자 중심 AI 개발을 위한 실무적 제언** 성공적인 AI 서비스를 위해서는 기술적 구현만큼이나 기획, 디자인, 엔지니어링 간의 유기적인 결합이 필수적입니다. NSona의 사례처럼 사용자의 목소리를 데이터 더미가 아닌 대화 가능한 실체로 변환하여 협업의 중심에 배치한다면, 보다 사용자의 니즈에 밀착된 서비스를 더 빠른 속도로 검증하고 개발할 수 있을 것입니다.

naver

FE News 25년 12월 소식을 전해드립니다! (새 탭에서 열림)

2025년 12월 FE News는 LLM의 영향력 확대와 웹 표준 기술의 진화로 인해 급변하는 프런트엔드 생태계의 핵심 흐름을 짚어줍니다. React가 LLM 학습 데이터와의 피드백 루프를 통해 독점적 플랫폼으로 굳어지는 현상과 함께, 브라우저 표준 API의 발전이 프레임워크의 의존도를 낮추는 상반된 양상을 동시에 조명합니다. 또한, Wasm의 본질과 Vercel의 언어적 비전 등 기술적 깊이를 더하는 소식들을 다루고 있습니다. ### WebAssembly에 대한 오해와 진실 * Wasm은 이름과 달리 웹 전용 기술도, 어셈블리 언어도 아닙니다. * 실체는 가상 머신에서 실행되는 바이트코드이며, 성격상 JVM이나 .NET 바이트코드와 유사한 범용 실행 환경을 지향합니다. * 'WebAssembly'라는 명칭은 프로젝트 초기 펀딩을 위해 전략적으로 채택된 네이밍일 뿐입니다. ### LLM 피드백 루프와 React의 독주 * LLM 학습 데이터와 개발 도구(Replit, Bolt 등)가 React를 기본값으로 설정하면서 React가 사실상의 표준 플랫폼으로 자리 잡았습니다. * 새로운 프레임워크가 LLM 학습 데이터에 충분히 반영되기까지는 최소 12~18개월이 소요되며, 그 사이 React는 수천만 개의 사이트를 추가로 생성하며 격차를 벌립니다. * 이러한 자기 강화 루프로 인해 신규 프레임워크가 시장을 점유하기 극도로 어려워지는 'Dead framework theory' 현상이 나타나고 있습니다. ### 분산 시스템을 처리하는 언어로의 진화 * Vercel은 'use cache', 'use workflow' 등의 디렉티브를 통해 분산 시스템의 복잡성을 프로그래밍 언어 수준에서 해결하려는 비전을 제시합니다. * 직렬화 가능한 클로저, 대수적 효과, 점진적 계산이라는 세 가지 핵심 개념을 기반으로 단순한 라이브러리를 넘어선 새로운 언어 구조처럼 작동합니다. * 향후 프로그래밍 언어는 어셈블리와 동시성을 넘어 데이터 관리와 분산 환경의 복잡성을 네이티브로 다루는 방향으로 진화할 전망입니다. ### 프레임워크를 대체하는 네이티브 웹 플랫폼 * Shadow DOM, ES 모듈, Navigation API, View Transitions API 등 브라우저 표준 기능이 과거 프레임워크의 핵심 역할을 대체하기 시작했습니다. * 라우팅, 상태 관리, 컴포넌트 격리 등을 표준 API로 해결함으로써 무거운 번들과 복잡한 추상화 없이도 고성능 애플리케이션 구축이 가능해졌습니다. * 프레임워크는 이제 개발의 필수 요건이 아닌, 필요에 따라 선택하는 영역으로 이동하고 있습니다. ### 집단 지성 기반의 AI 의사결정 시스템: LLM Council * Andrej Karpathy가 개발한 이 시스템은 여러 AI 모델이 민주적으로 협업하여 복잡한 문제를 해결하는 새로운 패러다임을 제시합니다. * '독립적 의견 제시 → 상호 검토 및 순위 매김 → 의장 LLM의 최종 종합'이라는 3단계 프로세스를 통해 단일 모델의 한계를 극복합니다. * GPT-5.1, Claude 4.5 등 다양한 최신 모델의 강점을 결합하여 더 신뢰할 수 있는 답변을 도출하며, 로컬 환경에서 Python과 React 기반으로 간편하게 실행할 수 있습니다. 개발자는 특정 프레임워크의 숙련도에 안주하기보다, 브라우저 표준 기술의 진화를 주시하고 LLM이 주도하는 개발 환경 변화에 유연하게 대응하는 전략이 필요합니다. 웹 기술의 근본적인 변화를 이해하고 표준 API를 적극적으로 활용하는 능력이 더욱 중요해질 것입니다.

naver

네이버 TV (새 탭에서 열림)

네이버 통합검색은 서비스 복잡도가 급증함에 따라 발생하는 장애 대응의 한계를 극복하기 위해 LLM 기반의 DevOps 에이전트를 도입했습니다. 이 에이전트는 단순히 장애 알람을 전달하는 수준을 넘어, 시스템 메트릭과 로그를 스스로 분석하고 최적의 조치 방안을 추천하며 경험을 통해 지속적으로 진화합니다. 결과적으로 복잡한 검색 인프라 운영의 효율성을 극대화하고 장애 복구 시간(MTTR)을 단축하는 것을 목표로 합니다. **기존 장애 대응 프로세스의 한계** * 네이버 검색은 수많은 마이크로서비스가 복잡하게 얽혀 있어, 장애 발생 시 원인을 파악하기 위해 확인해야 할 메트릭과 로그의 양이 방대합니다. * 기존의 룰 기반(Rule-based) 시스템은 정해진 규칙 외의 변칙적인 장애 상황에 유연하게 대응하기 어렵고, 운영자의 숙련도에 따라 대응 속도 차이가 크게 발생했습니다. * 장애 상황마다 산재한 데이터를 수동으로 취합하고 분석하는 과정에서 발생하는 인지적 부하와 시간 지연이 주요 해결 과제로 대두되었습니다. **Devops Agent의 구조적 진화 (v1에서 v2로)** * **v1 설계 및 한계:** 초기 버전은 기본적인 데이터 수집과 리포팅 자동화에 집중했으나, 다양한 인프라 환경에서 발생하는 복합적인 컨텍스트를 LLM이 완벽히 이해하고 추론하기에는 한계가 있었습니다. * **v2 구조 개선:** v1의 한계를 극복하기 위해 Agentic Workflow를 강화하여, 에이전트가 상황에 따라 필요한 도구(Tools)를 스스로 선택하고 분석 단계를 세분화하여 실행하도록 재설계했습니다. * **SW Stack 고도화:** 최신 LLM 프레임워크와 네이버의 인프라 데이터를 효율적으로 결합하여, 실시간으로 변화하는 시스템 상태를 에이전트가 즉각적으로 파악할 수 있는 기반을 마련했습니다. **시스템 동작과 이상 탐지 메커니즘** * **Trigger Queue:** 모든 장애 징후와 알람을 큐(Queue) 시스템으로 관리하여 분석의 우선순위를 정하고, 누락 없는 대응이 가능하도록 설계했습니다. * **이상 탐지(Anomaly Detection):** 단순 임계치 기반 알람이 아니라, 통계적 모델과 AI를 활용해 평상시 패턴에서 벗어나는 이상 현상을 정교하게 포착합니다. * **평가 체계:** 에이전트가 내놓은 분석 결과와 추천 액션의 정확도를 지속적으로 평가하며, 실제 엔지니어의 피드백을 학습 데이터로 환류시켜 분석 품질을 높입니다. **지속 가능한 DevOps를 위한 향후 과제** * **컨텍스트 확대:** 장애 당시의 로그뿐만 아니라 배포 이력, 설정 변경 내역 등 더 넓은 범위의 데이터를 연동하여 분석의 정확도를 높이고 있습니다. * **액션 추천 및 자동화:** 장애 원인 분석을 넘어 "특정 서버 그룹의 트래픽을 차단하라"와 같이 구체적인 실행 코드를 생성하거나 직접 조치하는 단계로 확장 중입니다. * **지속 가능한 학습:** 새로운 유형의 장애가 발생할 때마다 이를 지식화하여 에이전트가 다음번 유사 사례에서 더 똑똑하게 대응할 수 있는 선순환 구조를 구축하고 있습니다. 이 시스템은 인프라 운영자가 반복적인 데이터 취합 업무에서 벗어나 의사결정과 문제 해결에만 집중할 수 있는 환경을 제공합니다. LLM 에이전트의 도입은 단순한 도구 활용을 넘어, 대규모 시스템 운영 노하우를 데이터화하고 지능화된 자동화로 전환하는 중요한 기술적 이정표가 될 것입니다.

naver

[DAN25] 기술세션 영상이 모두 공개되었습니다. (새 탭에서 열림)

팀네이버의 컨퍼런스 DAN25에서 발표된 35개의 기술 세션 영상이 모두 공개되었으며, 그중 오프라인 현장에서 가장 큰 호응을 얻었던 5가지 핵심 세션의 상세 내용이 공유되었습니다. 이번 컨퍼런스는 AI 에이전트, 소버린 AI, AX 전략 등 네이버의 미래 비전과 실제 서비스 적용 사례를 중심으로 사용자 경험의 혁신 과정을 다루고 있습니다. 대규모 트래픽 처리부터 LLM의 서비스 최적화까지, 네이버의 기술적 고민과 해결책을 담은 실전 노하우를 온라인을 통해 확인할 수 있습니다. **LLM 기반 사용자 메모리 구축 및 실시간 반영** * 사용자의 파편화된 서비스 이용 기록을 '간접적인 대화'로 간주하여 개인화된 메모리를 구축하는 '네이버 PersonA' 프로젝트를 소개합니다. * 대규모 언어모델(LLM)의 추론 능력을 활용해 사용자에게 적절한 시점에 의미 있는 제안을 전달하는 시스템을 구현했습니다. * 실시간 로그를 대규모 사용자 환경에 안정적으로 반영하기 위한 기술적 대안과 AI 에이전트로 진화하기 위한 단계별 로드맵을 다룹니다. **랭킹 기반 플레이스 트렌드 분석 시스템** * 실시간 사용자 데이터를 분석하여 '지금 뜨는 장소'를 포착하기 위해 '급등'과 '지속'의 균형을 맞춘 랭킹 알고리즘을 적용했습니다. * 단순한 인기 순위를 넘어 텍스트 마이닝과 LLM을 결합하여 특정 장소가 주목받는 구체적인 이유를 키워드로 추출하는 과정을 공유합니다. **검색 서비스 특화 LLM 및 AI 브리핑** * 수십억 건의 질문과 답을 처리하는 검색 환경에 최적화하기 위해 범용 LLM 대신 검색 로그 기반의 특화 모델을 개발한 사례입니다. * 다양한 데이터 조합 실험과 최적화 레시피를 통해 범용 성능을 유지하면서도 검색 맞춤 기능을 강화한 기술적 노하우를 설명합니다. * 신뢰성을 높이는 'AuthGR' 기술과 전통적 검색 과정을 통합해 제시하는 'AI briefing'을 통해 검색 품질 개선 방향을 제시합니다. **추천-CRM 통합 모델과 실시간 개인화 UX** * 네이버 웹툰/시리즈 환경에서 관리 복잡성을 줄이기 위해 개별적으로 운영되던 추천 모델과 CRM 모델을 하나의 통합 프레임워크로 설계했습니다. * 배치(Batch) 기반 시스템에서 API 기반 실시간 추론 아키텍처로 전환하여 모델 간 일관성을 확보하고 사용자 경험을 고도화했습니다. **초대규모 로그 파이프라인 'Logiss' 운영 전략** * 초당 수백만 건, 하루 수백억 건에 달하는 전사 로그를 처리하기 위해 Storm과 Kafka 기반의 멀티 토폴로지를 적용하여 무중단 배포 환경을 구축했습니다. * 지능형 파이프라인을 도입해 피크 시간대의 트래픽을 분산시키고, 장애 발생 시 로그 우선순위에 따른 차등 처리로 시스템 안정성을 확보했습니다. * 샘플링 기능을 활용한 저장소 효율화 등 비용과 성능, 안정성을 동시에 잡은 대규모 데이터 인프라 관리 기법을 공유합니다. 네이버의 최신 기술 트렌드와 대규모 시스템 운영 노하우를 깊이 있게 이해하고 싶다면, DAN25 홈페이지나 네이버 TV 채널에 공개된 세션 풀 영상을 참고하시길 권장합니다. 특히 LLM을 실제 서비스 아키텍처에 어떻게 녹여낼지 고민하는 개발자나 데이터 엔지니어에게 실질적인 기술적 영감을 제공할 것입니다.

naver

네이버 TV (새 탭에서 열림)

네이버 엔지니어링 데이에서 발표된 이 내용은 로컬 LLM인 Ollama와 오픈소스 mcp-agent를 활용하여 프로젝트 자동화의 수준을 한 단계 높인 실무 사례를 다룹니다. 빌드 실패 분석부터 크래시 로그 요약, Slack 알림까지의 과정을 AI가 스스로 판단하고 수행하는 '협력자'로서의 모델을 제시하며, 이를 통해 개발자가 반복적인 모니터링 업무에서 벗어나 고차원적인 문제 해결에 집중할 수 있음을 보여줍니다. **로컬 기반 LLM 및 에이전트 활용 아키텍처** - Ollama를 활용하여 로컬 환경에 LLM을 구축함으로써 사내 보안 문제를 해결하고 데이터 유출 걱정 없이 분석 환경을 조성합니다. - 오픈소스인 mcp-agent(Model Context Protocol)를 도입하여 AI 모델이 단순한 텍스트 생성을 넘어 외부 도구 및 데이터와 실시간으로 상호작용하도록 설계합니다. - 단순 스크립트 기반 자동화와 달리, AI 에이전트가 상황을 인지하고 적절한 도구를 선택해 작업을 수행하는 유연한 워크플로우를 구현합니다. **지능형 빌드 실패 분석 및 크래시 모니터링** - 빌드 과정에서 발생하는 방대한 양의 에러 로그를 AI가 즉시 분석하여 실패의 근본 원인을 파악하고 요약합니다. - 앱 실행 중 발생하는 크래시 로그를 실시간으로 모니터링하고, 코드 변경 이력 등을 대조하여 해당 문제를 해결하기에 가장 적합한 담당자(Assignee)를 자동으로 매칭합니다. - 비정형 데이터인 로그 메시지를 의미론적으로 해석함으로써 기존 키워드 매칭 방식의 한계를 극복합니다. **Slack 연동을 통한 자동화된 리포팅 체계** - AI가 분석한 빌드 결과와 크래시 요약 내용을 Slack API를 통해 개발 팀 채널에 실시간으로 공유합니다. - 리포트에는 단순히 에러 메시지만 전달하는 것이 아니라, AI가 제안하는 해결 방안과 우선순위 등을 포함하여 팀의 의사결정 속도를 높입니다. - Slack 내에서 LLM과 대화하며 추가적인 로그 분석이나 세부 사항을 질의할 수 있는 대화형 자동화 환경을 제공합니다. **AI 자동화 도입 시 고려사항 및 한계** - LLM과 MCP의 조합이 강력하지만 모든 문제를 해결하는 만능 도구는 아니며, 결과값의 할루시네이션(환각 현상)에 대한 검증 프로세스가 병행되어야 합니다. - 자동화가 복잡해질수록 AI가 도구를 잘못 선택하거나 잘못된 분석을 내놓을 가능성이 있으므로, 단계적인 도입과 신뢰도 테스트가 필수적입니다. **실용적인 제언** 로컬 LLM을 활용한 자동화는 보안이 중요한 사내 프로젝트에서 비정형 데이터 분석 업무를 획기적으로 줄여줍니다. 특히 MCP와 같은 최신 프로토콜을 적극적으로 활용하여 LLM이 실제 개발 도구들과 긴밀하게 연결될 수 있도록 설계하는 것이 성공적인 AI 자동화 도입의 핵심입니다.