AWS / vector-db

4 posts

aws

Amazon OpenSearch Service improves vector database performance and cost with GPU acceleration and auto-optimization (opens in new tab)

Amazon OpenSearch Service has introduced serverless GPU acceleration and auto-optimization features designed to enhance the performance and cost-efficiency of large-scale vector databases. These updates allow users to build vector indexes up to ten times faster at a quarter of the traditional indexing cost, enabling the creation of billion-scale databases in under an hour. By automating complex tuning processes, OpenSearch Service simplifies the deployment of generative AI and high-speed search applications. ### GPU Acceleration for Rapid Indexing The new serverless GPU acceleration streamlines the creation of vector data structures by offloading intensive workloads to specialized hardware. * **Performance Gains:** Indexing speed is increased by 10x compared to non-GPU configurations, significantly reducing the time-to-market for data-heavy applications. * **Cost Efficiency:** Indexing costs are reduced to approximately 25% of standard costs, and users only pay for active processing through OpenSearch Compute Units (OCU) rather than idle instance time. * **Serverless Management:** There is no need to provision or manage GPU instances manually; OpenSearch Service automatically detects acceleration opportunities and isolates workloads within the user's Amazon VPC. * **Operational Scope:** Acceleration is automatically applied to both initial indexing and subsequent force-merge operations. ### Automated Vector Index Optimization Auto-optimization removes the requirement for deep vector expertise by automatically balancing competing performance metrics. * **Simplified Tuning:** The system replaces manual index tuning—which can traditionally take weeks—with automated configurations. * **Resource Balancing:** The tool finds the optimal trade-off between search latency, search quality (recall rates), and memory requirements. * **Improved Accuracy:** Users can achieve higher recall rates and better cost savings compared to using default, unoptimized index configurations. ### Configuration and Integration These features can be integrated into new or existing OpenSearch Service domains and Serverless collections through the AWS Console or CLI. * **CLI Activation:** Users can enable acceleration on existing domains using the `update-domain-config` command with the `--aiml-options` flag set to enable `ServerlessVectorAcceleration`. * **Index Settings:** To leverage GPU processing, users must create a vector index with specific settings, notably setting `index.knn.remote_index_build.enabled` to `true`. * **Supported Workloads:** The service supports standard OpenSearch operations, including the Bulk API for adding vector data and text embeddings. For organizations managing large-scale vector workloads for RAG (Retrieval-Augmented Generation) or semantic search, enabling GPU acceleration is a highly recommended step to reduce operational overhead. Developers should transition existing indexes to include the `remote_index_build` setting to take immediate advantage of the improved speed and reduced OCU pricing.

aws

Amazon S3 Vectors now generally available with increased scale and performance (opens in new tab)

Amazon S3 Vectors has reached general availability, establishing the first cloud object storage service with native support for storing and querying vector data. This serverless solution allows organizations to reduce total ownership costs by up to 90% compared to specialized vector database solutions while providing the performance required for production-grade AI applications. By integrating vector capabilities directly into S3, AWS enables a simplified architecture for retrieval-augmented generation (RAG), semantic search, and multi-agent workflows. ### Massive Scale and Index Consolidation The move to general availability introduces a significant increase in data capacity, allowing users to manage massive datasets without complex infrastructure workarounds. * **Increased Index Limits:** Each index can now store and search across up to 2 billion vectors, representing a 40x increase from the 50 million limit during the preview phase. * **Bucket Capacity:** A single vector bucket can now scale to house up to 20 trillion vectors. * **Simplified Architecture:** The increased scale per index removes the need for developers to shard data across multiple indexes or implement custom query federation logic. ### Performance and Latency Optimizations The service has been tuned to meet the low-latency requirements of interactive applications like conversational AI and real-time inference. * **Query Response Times:** Frequent queries now achieve latencies of approximately 100ms or less, while infrequent queries consistently return results in under one second. * **Enhanced Retrieval:** Users can now retrieve up to 100 search results per query (increased from 30), providing broader context for RAG applications. * **Write Throughput:** The system supports up to 1,000 PUT transactions per second for streaming single-vector updates, ensuring new data is immediately searchable. ### Serverless Efficiency and Ecosystem Integration S3 Vectors functions as a fully serverless offering, eliminating the need to provision or manage underlying instances while paying only for active storage and queries. * **Amazon Bedrock Integration:** It is now generally available as a vector storage engine for Bedrock Knowledge Bases, facilitating the building of RAG applications. * **OpenSearch Support:** Integration with Amazon OpenSearch allows users to utilize S3 Vectors for storage while leveraging OpenSearch for advanced analytics and search features. * **Expanded Footprint:** The service is now available in 14 AWS Regions, up from five during the preview period. With its massive scale and 90% cost reduction, S3 Vectors is a primary candidate for organizations looking to move AI prototypes into production. Developers should consider migrating high-volume vector workloads to S3 Vectors to benefit from the serverless operational model and the native integration with the broader AWS AI stack.