ax

1 posts

meta

Efficient Optimization With Ax, an Open Platform for Adaptive Experimentation - Engineering at Meta (opens in new tab)

Meta has released Ax 1.0, an open-source platform designed to automate and optimize complex, resource-intensive experimentation through machine learning. By utilizing Bayesian optimization, the platform helps researchers navigate vast configuration spaces to improve AI models, infrastructure, and hardware design efficiently. The release aims to bridge the gap between sophisticated mathematical theory and the practical requirements of production-scale engineering. ## Real-World Experimentation and Utility * Ax is used extensively at Meta for diverse tasks, including tuning hyperparameter configurations, discovering optimal data mixtures for Generative AI, and optimizing compiler flags. * The platform is built to handle the logistical "overhead" of experimentation, such as managing experiment states, automating orchestration, and providing diagnostic tools. * It supports multi-objective optimization, allowing users to balance competing metrics and enforce "guardrail" constraints rather than just maximizing a single value. * Applications extend beyond software to physical engineering, such as optimizing design parameters for AR/VR hardware. ## System Insight and Analysis * Beyond finding optimal points, Ax serves as a diagnostic tool to help researchers understand the underlying behavior of their systems. * It includes built-in visualizations for Pareto frontiers, which illustrate the trade-offs between different metrics. * Sensitivity analysis tools identify which specific input parameters have the greatest impact on the final results. * The platform provides automated plots and tables to track optimization progress and visualize the effect of parameters across the entire input space. ## Technical Methodology and Architecture * Ax utilizes Bayesian optimization, an iterative approach that balances "exploration" (sampling new areas) with "exploitation" (refining known good areas). * The platform relies on **BoTorch** for its underlying Bayesian components and typically employs **Gaussian processes (GP)** as surrogate models. * GPs are preferred because they can make accurate predictions and quantify uncertainty even when provided with very few data points. * The system uses an **Expected Improvement (EI)** acquisition function to calculate the potential value of new configurations compared to the current best-known result. * This surrogate-based approach is designed to scale to high-dimensional settings involving hundreds of tunable parameters where traditional search methods are too costly. To begin implementing these methods, developers can install the platform via `pip install ax-platform`. Ax 1.0 provides a robust framework for moving cutting-edge optimization research directly into production environments.