custom-metrics

1 posts

naver

Collecting Custom Metrics with Te (opens in new tab)

This technical session from NAVER ENGINEERING DAY 2025 details the transition from traditional open-source exporters to a Telegraf-based architecture for collecting custom system metrics. By evaluating various monitoring tools through rigorous benchmarking, the developers demonstrate how Telegraf provides a more flexible and high-performance framework for infrastructure observability. The presentation concludes that adopting Telegraf streamlines the metric collection pipeline and offers superior scalability for complex, large-scale service environments. ### Context and Motivation for Open-Source Exporters * The project originated from the need to overcome the limitations of standard open-source exporters that lacked support for specific internal business logic. * Engineers sought a unified way to collect diverse data points without managing dozens of fragmented, single-purpose agents. * The primary goal was to find a solution that could handle high-frequency data ingestion while maintaining low resource overhead on production servers. ### Benchmark Testing for Metric Collection * A comparative analysis was conducted between several open-source monitoring agents to determine their efficiency under load. * Testing focused on critical performance indicators, including CPU and memory footprint during peak metric throughput. * The results highlighted Telegraf's stability and consistent performance compared to other exporter-based alternatives, leading to its selection as the primary collection tool. ### Telegraf Architecture and Customization * Telegraf operates as a plugin-driven agent, utilizing four distinct categories: Input, Processor, Aggregator, and Output plugins. * The development team shared their experience writing custom exporters by leveraging Telegraf’s modular Go-based framework. * This approach allowed for the seamless transformation of raw data into various formats (such as Prometheus or InfluxDB) using a single, unified configuration. ### Operational Gains and Technical Options * Post-implementation, the system saw a significant reduction in operational complexity by consolidating various metric streams into a single agent. * Specific Telegraf options were utilized to fine-tune the collection interval and batch size, optimizing the balance between data granularity and network load. * The migration improved the reliability of metric delivery through built-in retry mechanisms and internal buffers that prevent data loss during transient network failures. For teams currently managing a sprawling array of open-source exporters, migrating to a Telegraf-based architecture is recommended to centralize metric collection. The plugin-based system not only reduces the maintenance burden but also provides the necessary extensibility to support specialized custom metrics as service requirements evolve.