embeddings

3 posts

google

A differentially private framework for gaining insights into AI chatbot use (opens in new tab)

Google Research has introduced Urania, a novel framework designed to extract high-level usage insights from AI chatbot conversations while maintaining rigorous differential privacy (DP) guarantees. Unlike previous heuristic methods that rely on simple redaction or LLM-based PII stripping, this pipeline ensures that no individual user's data can be reconstructed from the resulting summaries. By combining DP clustering and keyword extraction with LLM-based summarization, the system provides a formal, auditable approach to understanding platform trends without compromising sensitive information. ## Limitations of Heuristic Privacy * Existing frameworks often rely on large language models to manually strip personally identifiable information (PII) from text before analysis. * These heuristic protections are difficult to formalize or audit, and their effectiveness may diminish as models evolve or face sophisticated prompt injection attacks. * The Urania framework addresses these weaknesses by using mathematical privacy budgets (the epsilon parameter) to measure and limit the influence of any single user's data on the final output. ## The Differentially Private Pipeline * **DP Clustering**: The framework first converts conversation data into numerical embeddings. These are grouped using a DP clustering algorithm, ensuring that cluster centers reflect broad trends rather than specific individual inputs. * **DP Keyword Extraction**: The system identifies keywords for each cluster and generates a histogram of their frequency. By adding mathematical noise to these counts, the framework masks individual contributions and ensures that only keywords common to many users are retained. * **Keyword Generation Methods**: The researchers explored three methods for extraction: LLM-guided selection of relevant terms, a differentially private version of TF-IDF, and an LLM-guided approach that selects terms from a pre-defined list of public keywords. * **LLM Summarization**: In the final stage, an LLM generates a high-level summary of the cluster using only the noisy, anonymized keywords. Because the LLM never sees the raw conversation text, the "post-processing" property of DP guarantees that the final summary remains private. ## Privacy and Utility Trade-offs * The framework was tested against a non-private baseline (Simple-CLIO) to evaluate how privacy constraints affect the quality of the insights generated. * Stronger privacy settings (lower epsilon values) inherently result in a utility trade-off, as the added noise can obscure some niche usage patterns. * Despite these trade-offs, the framework provides a robust defense against data leakage, as the summarization model is structurally prevented from seeing sensitive original text, making it resilient to prompt injection. This framework offers a scalable way for platform providers to analyze chatbot usage patterns and enforce safety policies while providing mathematical certainty regarding user privacy. For organizations handling sensitive conversation data, moving from heuristic redaction to formal DP pipelines like Urania provides a more robust and auditable path for service improvement.

google

Google Earth AI: Unlocking geospatial insights with foundation models and cross-modal reasoning (opens in new tab)

Google Earth AI introduces a framework of geospatial foundation models and reasoning agents designed to solve complex, planetary-scale challenges through cross-modal reasoning. By integrating Gemini-powered orchestrators with specialized imagery, population, and environmental models, the system deconstructs multifaceted queries into actionable multi-step plans. This approach enables a holistic understanding of real-world events, such as disaster response and disease forecasting, by grounding AI insights in diverse, grounded geospatial data. ## Geospatial Reasoning Agents * Utilizes Gemini models as intelligent orchestrators to manage complex queries that require data from multiple domains. * The agent deconstructs a high-level question—such as predicting hurricane landfalls and community vulnerability—into a sequence of smaller, executable tasks. * It executes these plans by autonomously calling specialized foundation models, querying vast datastores, and utilizing geospatial tools to fuse disparate data points into a single, cohesive answer. ## Remote Sensing and Imagery Foundations * Employs vision-language models and open-vocabulary object detection trained on a large corpus of high-resolution overhead imagery paired with text descriptions. * Enables "zero-shot" capabilities, allowing users to find specific objects like "flooded roads" or "building damage" using natural language without needing to retrain the model for specific classes. * Technical evaluations show a 16% average improvement on text-based image search tasks and more than double the baseline accuracy for detecting novel objects in a zero-shot setting. ## Population Dynamics and Mobility * Focuses on the interplay between people and places using globally-consistent embeddings across 17 countries. * Includes monthly updated embeddings that capture shifting human activity patterns, which are essential for time-sensitive forecasting. * Research conducted with the University of Oxford showed that incorporating these population embeddings into a Dengue fever forecasting model in Brazil improved the R² metric from 0.456 to 0.656 for long-range 12-month predictions. ## Environmental and Disaster Forecasting * Integrates established Google research into weather nowcasting, flood forecasting, and wildfire boundary mapping. * Provides the reasoning agent with the data necessary to evaluate environmental risks alongside population density and infrastructure imagery. * Aims to provide Search and Maps users with real-time, accurate alerts regarding natural disasters grounded in planetary-scale environmental data. Developers and enterprises looking to solve high-level geospatial problems can now express interest in accessing these capabilities through Google Earth and Google Cloud. By leveraging these foundation models, organizations can automate the analysis of satellite imagery and human mobility data to better prepare for environmental and social challenges.

google

Geospatial Reasoning: Unlocking insights with generative AI and multiple foundation models (opens in new tab)

Google Research is introducing Geospatial Reasoning, a new framework that integrates generative AI with specialized foundation models to streamline complex geographical problem-solving. By combining large language models like Gemini with domain-specific data, the initiative seeks to make large-scale spatial analysis accessible to sectors like public health, urban development, and climate resilience. This research effort moves beyond traditional data silos, enabling agentic workflows that can interpret diverse data types—from satellite imagery to population dynamics—through natural language. ### Specialized Foundation Models for Human Activity * The Population Dynamics Foundation Model (PDFM) captures the complex interplay between human behaviors and their local environments. * A dedicated trajectory-based mobility foundation model has been developed to process and analyze movement patterns. * While initially tested in the US, experimental datasets are expanding to include the UK, Australia, Japan, Canada, and Malawi for selected partners. ### Remote Sensing and Vision Architectures * New models utilize advanced architectures including masked autoencoders, SigLIP, MaMMUT, and OWL-ViT, specifically adapted for the remote sensing domain. * Training involves high-resolution satellite and aerial imagery paired with text descriptions and bounding box annotations to enable precise object detection. * The models support zero-shot classification and retrieval, allowing users to locate specific features—such as "residential buildings with solar panels"—using flexible natural language queries. * Internal evaluations show state-of-the-art performance across multiple benchmarks, including image segmentation and post-disaster damage assessment. ### Agentic Workflows and Industry Collaboration * The Geospatial Reasoning framework utilizes LLMs like Gemini to manage complex datasets and orchestrate "agentic" workflows. * These workflows are grounded in geospatial data to ensure that the insights generated are both useful and contextually accurate. * Google is collaborating with inaugural industry partners, including Airbus, Maxar, Planet Labs, and WPP, to test these capabilities in real-world scenarios. Organizations interested in accelerating their geospatial analysis should consider applying for the trusted tester program to explore how these foundation models can be fine-tuned for specific proprietary data and use cases.