graph-analysis

1 posts

line

The Present State of LY Corporation's (opens in new tab)

Tech-Verse 2025 showcased LY Corporation’s strategic shift toward an AI-integrated ecosystem following the merger of LINE and Yahoo Japan. The event focused on the practical hurdles of deploying generative AI, concluding that the transition from experimental models to production-ready services requires sophisticated evaluation frameworks and deep contextual integration into developer workflows. ## AI-Driven Engineering with Ark Developer LY Corporation’s internal "Ark Developer" solution demonstrates how AI can be embedded directly into the software development life cycle. * The system utilizes a Retrieval-Augmented Generation (RAG) based code assistant to handle tasks such as code completion, security reviews, and automated test generation. * Rather than treating codebases as simple text documents, the tool performs graph analysis on directory structures to maintain structural context during code synthesis. * Real-world application includes a seamless integration with GitHub for automated Pull Request (PR) creation, with internal users reporting higher satisfaction compared to off-the-shelf tools like GitHub Copilot. ## Quantifying Quality in Generative AI A significant portion of the technical discussion centered on moving away from subjective "vibes-based" assessments toward rigorous, multi-faceted evaluation of AI outputs. * To measure the quality of generated images, developers utilized traditional metrics like Fréchet Inception Distance (FID) and Inception Score (IS) alongside LAION’s Aesthetic Score. * Advanced evaluation techniques were introduced, including CLIP-IQA, Q-Align, and Visual Question Answering (VQA) based on video-language models to analyze image accuracy. * Technical challenges in image translation and inpainting were highlighted, specifically the difficulty of restoring layout and text structures naturally after optical character recognition (OCR) and translation. ## Global Technical Exchange and Implementation The conference served as a collaborative hub for engineers across Japan, Taiwan, and Korea to discuss the implementation of emerging standards like the Model Context Protocol (MCP). * Sessions emphasized the "how-to" of overcoming deployment hurdles rather than just following technical trends. * Poster sessions (Product Street) and interactive Q&A segments allowed developers to share localized insights on LLM agent performance and agentic workflows. * The recurring theme across diverse teams was that the "evaluation and verification" stage is now the primary driver of quality in generative AI services. For organizations looking to scale AI, the key recommendation is to move beyond simple implementation and invest in "evaluation-driven development." By building internal tools that leverage graph-based context and quantitative metrics like Aesthetic Scores and VQA, teams can ensure that generative outputs meet professional service standards.