mcp

3 posts

toss

Automating Service Vulnerability Analysis Using (opens in new tab)

Toss has developed a high-precision automated vulnerability analysis system by integrating Large Language Models (LLMs) with traditional security testing tools. By evolving their architecture from a simple prompt-based approach to a multi-agent system utilizing open-source models and static analysis, the team achieved over 95% accuracy in threat detection. This project demonstrates that moving beyond a technical proof-of-concept requires solving real-world constraints such as context window limits, output consistency, and long-term financial sustainability. ### Navigating Large Codebases with MCP * Initial attempts to use RAG (Retrieval Augmented Generation) and repository compression tools failed because the LLM could not maintain complex code relationships within token limits. * The team implemented a "SourceCode Browse MCP" (Model Context Protocol) which allows the LLM agent to dynamically query the codebase. * By indexing the code, the agent can perform specific tool calls to find function definitions or variable usages only when necessary, effectively bypassing context window restrictions. ### Ensuring Consistency via SAST Integration * Testing revealed that standalone LLMs produced inconsistent results, often missing known vulnerabilities or generating hallucinations across different runs. * To solve this, the team integrated Semgrep, a Static Application Security Testing (SAST) tool, to identify all potential "Source-to-Sink" paths. * Semgrep was chosen over CodeQL due to its lighter resource footprint and faster execution, acting as a structured roadmap that ensures the LLM analyzes every suspicious input path without omission. ### Optimizing Costs with Multi-Agent Architectures * Analyzing every possible code path identified by SAST tools was prohibitively expensive due to high token consumption. * The workflow was divided among three specialized agents: a Discovery Agent to filter out irrelevant paths, an Analysis Agent to perform deep logic checks, and a Verification Agent to confirm findings. * This "sieve" strategy ensured that the most resource-intensive analysis was only performed on high-probability vulnerabilities, significantly reducing operational costs. ### Transitioning to Open Models for Sustainability * Scaling the system to hundreds of services and daily PRs made proprietary cloud models financially unviable. * After benchmarking models like Llama 3.1 and GPT-OSS, the team selected **Qwen3:30B** for its 100% coverage rate and high true-positive accuracy in vulnerability detection. * To bridge the performance gap between open-source and proprietary models, the team utilized advanced prompt engineering, one-shot learning, and enforced structured JSON outputs to improve reliability. To build a production-ready AI security tool, teams should focus on the synergy between specialized open-source models and traditional static analysis tools. This hybrid approach provides a cost-effective and sustainable way to achieve enterprise-grade accuracy while maintaining full control over the analysis infrastructure.

line

We held AI Campus Day to (opens in new tab)

LY Corporation recently hosted "AI Campus Day," a large-scale internal event designed to bridge the gap between AI theory and practical workplace application for over 3,000 employees. By transforming their office into a learning campus, the company successfully fostered a culture of "AI Transformation" through peer-led mentorship and task-specific experimentation. The event demonstrated that internal context and hands-on participation are far more effective than traditional external lectures for driving meaningful AI literacy and productivity gains. ## Hands-on Experience and Technical Support * The curriculum featured 10 specialized sessions across three tracks—Common, Creative, and Engineering—to ensure relevance for every job function. * Sessions ranged from foundational prompt engineering for non-developers to advanced technical topics like building Model Context Protocol (MCP) servers for engineers. * To ensure smooth execution, the organizers provided comprehensive "Session Guides" containing pre-configured account settings and specific prompt templates. * The event utilized a high support ratio, with 26 teaching assistants (TAs) available to troubleshoot technical hurdles in real-time and dedicated Slack channels for sharing live AI outputs. ## Peer-Led Mentorship and Internal Context * Instead of hiring external consultants, the program featured 10 internal "AI Mentors" who shared how they integrated AI into their actual daily workflows at LY Corporation. * Training focused exclusively on company-approved tools, including ChatGPT Enterprise, Gemini, and Claude Code, ensuring all demonstrations complied with internal security protocols. * Internal mentors were able to provide specific "company context" that external lecturers lack, such as integrating AI with existing proprietary systems and data. * A rigorous three-stage quality control process—initial flow review, final end-to-end dry run, and technical rehearsal—was implemented to ensure the educational quality of mentor-led sessions. ## Gamification and Cultural Engagement * The event was framed as a "festival" rather than a mandatory training, using campus-themed motifs like "enrollment" and "school attendance" to reduce psychological barriers. * A "Stamp Rally" system encouraged participation by offering tiered rewards, including welcome kits, refreshments, and subscriptions to premium AI tools. * Interactive exhibition booths allowed employees to experience AI utility firsthand, such as an AI photo zone using Gemini to generate "campus-style" portraits and an AI Agent Contest booth. * Strong executive support played a crucial role, with leadership encouraging staff to pause routine tasks for the day to focus entirely on AI experimentation and "playing" with new technologies. To effectively scale AI literacy within a large organization, it is recommended to move away from passive, one-size-fits-all lectures. Success lies in leveraging internal experts who understand the specific security and operational constraints of the business, and creating a low-pressure environment where employees can experiment with hands-on tasks relevant to their specific roles.

line

AI and the Writer’s Journey (opens in new tab)

LY Corporation is addressing the chronic shortage of high-quality technical documentation by treating the problem as an engineering challenge rather than a training issue. By utilizing Generative AI to automate the creation of API references, the Document Engineering team has transitioned from a "manual craftsmanship" approach to an "industrialized production" model. While the system significantly improves efficiency and maintains internal context better than generic tools, the team concludes that human verification remains essential due to the high stakes of API accuracy. ### Contextual Challenges with Generic AI Standard coding assistants like GitHub Copilot often fail to meet the specific documentation needs of a large organization. * Generic tools do not adhere to internal company style guides or maintain consistent terminology across projects. * Standard AI lacks awareness of internal technical contexts; for example, generic AI might mistake a company-specific identifier like "MID" for "Member ID," whereas the internal tool understands its specific function within the LY ecosystem. * Fragmented deployment processes across different teams make it difficult for developers to find a single source of truth for API documentation. ### Multi-Stage Prompt Engineering To ensure high-quality output without overwhelming the LLM's "memory," the team refined a complex set of instructions into a streamlined three-stage workflow. * **Language Recognition:** The system first identifies the programming language and specific framework being used. * **Contextual Analysis:** It analyzes the API's logic to generate relevant usage examples and supplemental technical information. * **Detail Generation:** Finally, it writes the core API descriptions, parameter definitions, and response value explanations based on the internal style guide. ### Transitioning to Model Context Protocol (MCP) While the prototype began as a VS Code extension, the team shifted to using the Model Context Protocol (MCP) to ensure the tool was accessible across various development environments. * Moving to MCP allows the tool to support multiple IDEs, including IntelliJ, which was a high-priority request from the developer community. * The MCP architecture decouples the user interface from the core logic, allowing the "host" (like the IDE) to handle UI interactions and parameter inputs. * This transition reduced the maintenance burden on the Document Engineering team by removing the need to build and update custom UI components for every IDE. ### Performance and the Accuracy Gap Evaluation of the AI-generated documentation showed strong results, though it highlighted the unique risks of documenting APIs compared to other forms of writing. * Approximately 88% of the AI-generated comments met the team's internal evaluation criteria. * The specialized generator outperformed GitHub Copilot in 78% of cases regarding style and contextual relevance. * The team noted that while a 99% accuracy rate is excellent for a blog post, a single error in a short API reference can render the entire document useless for a developer. To successfully implement AI-driven documentation, organizations should focus on building tools that understand internal business logic while maintaining a strict "human-in-the-loop" workflow. Developers should use these tools to generate the bulk of the content but must perform a final technical audit to ensure the precision that only a human author can currently guarantee.