np-hard

1 posts

google

A new quantum toolkit for optimization (opens in new tab)

Researchers at Google Quantum AI have introduced Decoded Quantum Interferometry (DQI), a new quantum algorithm designed to tackle optimization problems that remain intractable for classical supercomputers. By leveraging the wavelike nature of quantum mechanics to create specific interference patterns, the algorithm converts complex optimization tasks into high-dimensional lattice decoding problems. This breakthrough provides a theoretical framework where large-scale, error-corrected quantum computers could eventually outperform classical methods by several orders of magnitude on commercially relevant tasks. ### Linking Optimization to Lattice Decoding * The DQI algorithm functions by mapping the cost landscape of an optimization problem onto a periodic lattice structure. * The "decoding" aspect involves identifying the nearest lattice element to a specific point in space, a task that becomes exponentially difficult for classical computers as dimensions increase into the hundreds or thousands. * By using quantum interference to bridge these fields, researchers can apply decades of sophisticated classical decoding research—originally developed for data storage and transmission—to solve optimization challenges. * This approach is unique because it requires a quantum computer to leverage these classical decoding algorithms in a way that conventional hardware cannot. ### Solving the Optimal Polynomial Intersection (OPI) Problem * The most significant application of DQI is for the OPI problem, where the goal is to find a low-degree polynomial that intersects the maximum number of given target points. * OPI is a foundational task in data science (polynomial regression), cryptography, and digital error correction, yet it remains "hopelessly difficult" for classical algorithms in many scenarios. * DQI transforms the OPI problem into a task of decoding Reed-Solomon codes, a family of codes widely used in technologies like QR codes and DVDs. * Technical analysis indicates a massive performance gap: certain OPI instances could be solved by a quantum computer in approximately a few million operations, while the most efficient classical algorithms would require over $10^{23}$ (one hundred sextillion) operations. ### Practical Conclusion As quantum hardware moves toward the era of error correction, Decoded Quantum Interferometry identifies a specific class of "NP-hard" problems where quantum machines can provide a clear win. Researchers and industries focusing on cryptography and complex data regression should monitor DQI as a primary candidate for demonstrating the first generation of commercially viable quantum advantage in optimization.