chain-of-thought

2 개의 포스트

“생각하고 답변하는” 카카오의 하이브리드 멀티모달 언어모델, Kanana-v-4b-hybrid 개발기 - tech.kakao.com (새 탭에서 열림)

카카오가 개발한 'Kanana-v-4b-hybrid'는 단순한 이미지 인식을 넘어 논리적 추론과 자기 점검 기능을 갖춘 하이브리드 멀티모달 언어모델입니다. 이 모델은 단일 시스템 내에서 일상적인 대화와 복잡한 시각적 추론을 동시에 수행하며, 특히 한국어 특유의 섬세한 제약 조건을 정확히 이해하고 처리하는 데 최적화되어 있습니다. 이를 통해 한국어 기반의 검정고시 및 수능 문항 평가인 KoNET에서 92.8점이라는 높은 성적을 거두며 한국형 AI의 새로운 가능성을 입증했습니다. ### 하이브리드 대응을 위한 단일 모델 구조 * 직관적 응답이 필요한 일반 대화와 논리적 단계가 필요한 추론 모델을 분리하지 않고 하나의 모델로 통합했습니다. * 별도의 라우팅(Routing) 시스템 없이도 한 대화 세션 내에서 시시각각 변하는 질의 성격에 유연하게 대응할 수 있습니다. * 모델 통합을 통해 응답 톤, 포맷, 안전 정책의 일관성을 유지하며, 시스템 운영 복잡도와 유지보수 비용을 획기적으로 낮췄습니다. ### 검증 가능한 결론을 도출하는 시각적 추론 * 이미지를 단순히 설명하는 수준을 넘어, 이미지 내 정보를 종합하고 조건을 적용하여 결론을 도출하는 '시각적 추론'에 집중했습니다. * 모델 스스로 정보 종합, 추론 전개, 결과 검증, 최종 답변의 단계를 거치도록 설계되어 답변의 근거가 명확합니다. * 영수증 검산, 표 기반 조건 필터링, 이미지 기반 수학 문제 풀이 등 단순 OCR로는 해결하기 어려운 복잡한 과제에서 높은 정확도를 보여줍니다. ### 신뢰도를 높이는 자기 점검(Reflection) 메커니즘 * 자신의 추론 과정을 스스로 재검토하여 모순이나 실수 가능성을 찾아내는 자기 점검 기능을 탑재했습니다. * 복잡한 멀티모달 질의에서 발생하기 쉬운 조건 누락이나 사소한 계산 실수를 스스로 발견하고 수정하는 패턴을 보입니다. * 이러한 '자기 수정' 과정은 모델의 단순한 정확성을 넘어, 사용자가 AI의 답변을 믿고 사용할 수 있게 만드는 핵심적인 신뢰 요인이 됩니다. ### 한국어 직관을 보존하는 로컬 추론 프로세스 * '~만 제외하고', '단, ~인 경우에만'과 같은 한국어 특유의 복잡한 예외 및 조건부 표현을 번역 없이 한국어 그대로 사고합니다. * 영문 추론 과정에서 발생할 수 있는 의미 왜곡이나 정보 누락을 방지하여 한국어 질의의 의도를 끝까지 유지합니다. * 이미지 속 한국어 텍스트 정보를 다른 언어로 변환하지 않고 직접 처리함으로써 정보의 손실 없는 논리 전개가 가능합니다. Kanana-v-4b-hybrid는 높은 기술적 완성도를 바탕으로 실제 서비스 환경에서 비용 효율성과 정확성을 동시에 잡으려는 환경에 적합합니다. 특히 한국어 환경에서의 정밀한 업무 보조나 교육용 AI 솔루션처럼 정답의 신뢰도가 중요한 분야에서 이 모델의 하이브리드 추론 능력은 강력한 경쟁력이 될 것입니다.

Sensible Agent: 선제적 (새 탭에서 열림)

구글 XR 연구팀이 개발한 'Sensible Agent'는 사용자의 명시적인 음성 명령 없이도 실시간 맥락을 파악해 능동적으로 도움을 주는 AR 에이전트 프레임워크입니다. 이 시스템은 시선, 손의 사용 가능 여부, 주변 소음 등의 데이터를 분석하여 지원의 내용(What)과 전달 방식(How)을 동시에 결정함으로써 일상생활의 흐름을 방해하지 않는 비침해적 상호작용을 구현합니다. 결과적으로 사회적 어색함과 인지적 부담을 줄여 AR 기기가 일상에 자연스럽게 통합될 수 있는 기술적 토대를 제시합니다. ### 능동형 지원의 핵심: 무엇을(What)과 어떻게(How)의 결합 * **지능적 판단 구조:** 에이전트는 사용자의 상황을 실시간으로 감지하여 도움의 필요성(Action)뿐만 아니라, 그 도움을 어떤 UI 형태(아이콘, 선택지 등)와 매체(시각, 청각 등)로 전달할지 스스로 판단합니다. * **상황별 맞춤형 대응:** 예를 들어 사용자가 식당에서 메뉴판을 볼 때는 인기 메뉴를 추천하고, 마트에서는 장바구니 목록을 조용히 띄워주는 식의 능동적인 지원이 가능합니다. * **비침해성 유지:** 주변이 시끄럽거나 대화 중인 상황에서는 음성 대신 시각적 아이콘을 사용하고, 손이 자유롭지 않을 때는 고개 끄덕임 등으로 입력을 받는 등 주변 환경과 조화를 이루는 상호작용 방식을 선택합니다. ### 맥락 분석 및 쿼리 생성 프로세스 * **맥락 파서(Context Parser):** 헤드셋 카메라의 영상을 분석하는 시각 언어 모델(VLM)과 주변 소음을 감지하는 오디오 분류기(YAMNet)를 통해 사용자의 현재 활동과 환경적 제약을 파악합니다. * **능동형 쿼리 생성기:** 파악된 맥락을 바탕으로 LLM의 '사고의 사슬(Chain-of-Thought)' 추론 기법을 활용해 단계별 문제를 해결하고 최적의 제안을 생성합니다. * **퓨샷 러닝(Few-shot Learning):** 데이터 수집 연구에서 도출된 사례들을 학습 가이드로 활용하여, 모델이 특정 상황에서 어떤 행동(예: 번역, 추천)과 출력 방식(예: 오디오 전용, 시각 전용)이 적절한지 정확하게 결정하도록 돕습니다. ### 맥락에 최적화된 비침해적 상호작용 모듈 * **다중 모달리티 인터페이스:** 안드로이드 XR(Android XR) 및 WebXR 기반으로 구현된 이 프로토타입은 텍스트 음성 변환(TTS)과 시각적 패널 렌더링을 상황에 맞춰 혼합 사용합니다. * **적응형 입력 관리:** 환경과 사용자의 상태에 따라 가장 적합한 입력 방식(머리 제스처, 손 제스처, 음성 명령, 시선 처리 등)을 활성화합니다. * **사회적 맥락 존중:** 사용자가 요리 중이라 손을 쓸 수 없을 때는 고개 흔들기로 제안을 거절할 수 있게 하거나, 공공장소에서는 조용히 시각 정보만 노출하여 사회적 불편함을 최소화합니다. ### 실용적 결론 및 전망 Sensible Agent는 기존 AR 시스템이 가졌던 '명시적 명령 기반'의 한계를 극복하고, 사용자의 인지 부하를 낮추는 방향으로 진화했습니다. 이는 향후 AR 글래스가 단순한 정보 표시 장치를 넘어, 사용자의 의도를 선제적으로 파악하고 상황에 맞게 행동하는 '사회적으로 지능적인' 파트너로 발전할 수 있음을 보여줍니다. 실제 일상에서의 실용성을 높이기 위해서는 다양한 소음 환경과 복합적인 사회적 시나리오에서의 정밀한 맥락 인식 기술이 더욱 중요해질 것으로 보입니다.