ensemble-learning

2 개의 포스트

토스 Next ML Challenge - 광고 클릭 예측(PCTR) ML 경진대회 출제 후기 (새 탭에서 열림)

토스는 실제 서비스 데이터를 기반으로 한 광고 클릭 예측(CTR) 모델 개발 대회인 'Toss Next ML Challenge'를 통해 우수 ML 인재를 발굴하고 현업의 기술적 난제를 공유했습니다. 약 2,600명의 참가자가 1,070만 건의 익명화된 데이터를 바탕으로 실시간 서빙이 가능한 고성능 모델을 설계했으며, 출제진의 의도를 뛰어넘는 창의적인 피처 엔지니어링과 모델링 기법들이 제시되었습니다. 이번 대회는 데이터 보안과 실무적 난이도 사이의 균형을 맞춘 문제 설계를 통해 참가자들에게 실질적인 ML 시스템 설계 경험을 제공하고 토스 ML 챕터의 비전을 알리는 계기가 되었습니다. **실무 기반의 문제 설계와 CTR 예측** - 토스 앱 내 디스플레이 광고의 노출 및 클릭 로그를 활용해 특정 조건에서의 클릭 확률을 예측하는 모델 설계를 과제로 제시했습니다. - 약 1,070만 건의 대규모 트레이닝 샘플과 성별, 연령, 광고 지면 ID 등 다양한 피처를 제공하여 데이터 규모 측면의 실무 환경을 재현했습니다. - 단순히 예측 정확도뿐만 아니라 실제 서비스 적용을 고려하여 '실시간 서빙 가능성(Inference 속도)'을 가점 사항으로 포함해 효율적인 모델 구조 설계를 유도했습니다. **데이터 익명화의 한계와 시퀀스 피처의 도입** - 외부 반출을 위한 데이터 익명화 과정에서 다수 테이블의 조인이 어려워짐에 따라, 여러 데이터를 직접 가공하여 하나의 정형 테이블 형태로 제공했습니다. - 문제 난이도가 지나치게 낮아지는 것을 방지하기 위해 가공되지 않은 '시퀀스(Sequence) 피처'를 의도적으로 포함하여 참가자들의 분석 역량을 시험했습니다. - 참가자들은 익명화된 피처의 의미를 알 수 없는 제약 속에서도 시계열 특성을 파악하고 이를 수십 개의 파생 변수로 변환하는 집요함을 보여주었습니다. **참가자들의 모델링 전략과 기술적 통계** - 본선 진출 30팀 모두가 LightGBM, XGBoost 등 Boosting Tree 계열의 모델을 핵심적으로 활용했으며, 딥러닝 모델은 선택적으로 병행되었습니다. - 한 팀은 실시간 서빙이라는 제약 조건 속에서도 260개의 모델을 앙상블하는 파격적인 시도로 성능 극대화를 꾀했습니다. - 단일 시퀀스 피처에서 토큰 개수, 전이 결속도 등 37개의 파생 변수를 생성하여 성능을 높인 사례는 도메인 지식 없이도 순수 데이터 분석만으로 실무 수준 이상의 통찰을 보여준 결과였습니다. **대회의 성과와 실무적 시사점** - 리더보드 상위권 팀들은 공통적으로 시퀀스 피처를 심도 있게 분석하고, 복합적인 모델 앙상블과 더불어 과적합 방지 및 서빙 효율성을 고려한 설계를 제출했습니다. - 오프라인 시상식과 네트워킹을 통해 현업 엔지니어와 참가자들이 기술적 아이디어를 교환하며 실제 비즈니스 문제 해결을 위한 커뮤니티를 형성했습니다. - 익명화된 데이터 환경에서도 창의적인 피처 엔지니어링이 모델 성능을 결정짓는 핵심 요소임을 재확인했으며, 이는 향후 유사한 ML 챌린지 설계의 기준이 될 것으로 보입니다.

MLE-STAR: 최첨단 (새 탭에서 열림)

MLE-STAR는 웹 검색 기능과 정밀한 코드 블록 최적화 메커니즘을 결합한 차세대 머신러닝 엔지니어링 에이전트로, 복잡한 ML 파이프라인 구축 과정을 자동화합니다. 기존 에이전트들이 LLM의 사전 지식에만 의존하거나 코드 전체를 한 번에 수정하려 했던 한계를 극복하기 위해, 성능에 가장 큰 영향을 미치는 특정 구성 요소를 식별하고 이를 집중적으로 개선하는 방식을 채택했습니다. 그 결과 MLE-Bench-Lite의 Kaggle 경진 대회에서 63%의 메달 획득률을 기록하며 기존 기술들을 압도하는 성능을 증명했습니다. **웹 검색을 통한 최신 기법 도입 및 초기 솔루션 구축** * LLM의 내장된 지식에만 의존할 때 발생하는 특정 라이브러리(예: scikit-learn) 편향 문제를 해결하기 위해 실시간 웹 검색 기능을 활용합니다. * 주어진 과제와 데이터 모달리티에 가장 적합한 최신(State-of-the-art) 모델과 방법론을 검색하여 초기 솔루션 코드를 생성하는 기반으로 삼습니다. **어블레이션 연구 기반의 타겟 코드 블록 정제** * 전체 파이프라인 코드를 무작위로 수정하는 대신, '어블레이션 연구(Ablation Study)'를 수행하여 피처 엔지니어링이나 모델 구조 등 성능 기여도가 가장 높은 특정 코드 블록을 찾아냅니다. * 식별된 핵심 블록에 대해 이전 시도의 실행 결과와 피드백을 반영하며 집중적인 반복 실험을 수행함으로써, 특정 파이프라인 단계에서의 최적화를 심도 있게 진행합니다. **지능형 솔루션 앙상블 전략** * 단순한 성능 기반 투표 방식에서 벗어나, 에이전트가 스스로 여러 후보 솔루션을 병합할 수 있는 최적의 앙상블 전략을 직접 설계하고 제안합니다. * 병렬로 생성된 다양한 해결책들을 유기적으로 결합하며, 이 과정 또한 반복적인 피드백 루프를 통해 지속적으로 개선하여 최종 예측 성능을 극대화합니다. **시스템 안정성 및 신뢰성 강화를 위한 모듈** * **디버깅 에이전트:** 파이썬 스크립트 실행 중 발생하는 트레이스백(Traceback) 오류를 분석하고 즉각적으로 코드를 교정합니다. * **데이터 누수(Data Leakage) 체크:** 테스트 데이터의 정보가 학습 과정에 유입되는 위험을 방지하기 위해 실행 전 스크립트의 논리적 무결성을 검증합니다. * **데이터 사용 확인 도구:** 에이전트가 CSV와 같은 단순한 데이터만 사용하고 다른 중요한 데이터 소스를 누락하지 않도록 모든 제공된 데이터를 활용하는지 감시합니다. MLE-STAR는 단순한 코드 생성을 넘어 데이터 분석, 전략 수립, 오류 수정 및 검증에 이르는 머신러닝 엔지니어링의 전 과정을 수행할 수 있음을 보여줍니다. 특히 Kaggle과 같은 실제 경쟁 환경에서 높은 성과를 낸 만큼, 향후 기업 현장에서 복잡한 데이터 파이프라인을 효율적으로 구축하고 실험 비용을 절감하는 데 실질적인 도움을 줄 것으로 기대됩니다.